Projekt výstavby fotovoltaické elektrárny
bakalářská práce

Autor: Andrea Jišová
Vedoucí práce: Ing. Martina Kuncová, Ph.D.
Jihlava 2012
ANOTACE

Tato bakalářská práce pojednává o projektovém řízení, charakterizuje jeho hlavní aspekty a kroky vedoucí k vytvoření úspěšného projektu. Současně se zabývá problematikou výroby elektřiny z obnovitelných zdrojů a zaměřuje se na využití fotovoltaiky v České republice. Součástí práce je analýza financování fotovoltaické elektrárny a posouzení rentability na základě legislativních ustanovení.

KLÍČOVÁ SLOVA

projektové řízení, projekt, obnovitelné zdroje, fotovoltaika, fotovoltaická elektrárna, výkupní cena, zelený bonus

ANNOTATION

This thesis deals with project management. It characterizes the main aspects of project management and the steps leading to the creation of a successful project. At the same time this thesis deals with the production of electricity from renewable resources and focuses on the use of photovoltaic energy production in Czech Republic. The thesis contains an analysis of a photovoltaic power plant financing and an assessment of profitability based on legislative provisions.

KEY WORDS

project management, project, renewable resources, photovoltaic, photovoltaic power plant, purchase price, green bonus
PODĚKOVÁNÍ

Ráda bych poděkovala vedoucí bakalářské práce Ing. Martině Kuncové, Ph.D. za odborné vedení, rady, ochotu a trpělivost při zpracování mé bakalářské práce. Dále chci také poděkovat panu Michalu Šimkovi za poskytnuté informace a zároveň bych chtěla poděkovat všem konzultantům, kteří mi věnovali čas při informativních schůzkách.

V poslední řadě děkuji za morální podporu své rodině, přátelům a pracovnímu týmu.
OBSAH

1 Úvod ... 9

2 Projektové řízení .. 10
 2.1 Co je projekt .. 10
 2.2 Charakteristické rysy projektu .. 11
 2.3 Cíl projektu .. 11

3 Projektový tým .. 11

4 Harmonogram projektu .. 12

5 Řízení rizik ... 12

6 Financování a náklady projektu ... 13
 6.1 Náklady projektu ... 13
 6.2 Zdroje financování .. 14
 6.2.1 Vlastní zdroje .. 14
 6.2.2 Cizí zdroje .. 15
 6.2.3 Podpora z veřejných zdrojů a zdrojů Evropské unie ... 15

7 Microsoft Project ... 15
 7.1 Výhody programu Microsoft Project .. 16

8 Obnovitelné zdroje .. 16
 8.1 Solární energie .. 17

9 Fotovoltaika .. 18
 9.1 Historie .. 18
 9.2 Charakteristika fotovoltaických systémů ... 19

10 Legislativa .. 20
 10.1 Garantovaná výkupní cena ... 21
 10.2 Režim zelených bonusů .. 21
 10.3 Solární daň .. 21

11 Charakteristika projektu ... 22
 11.1 Popis areálu – Josefův Důl ... 23
 11.2 Záměr projektu .. 24
 11.3 Cíl projektu .. 24
 11.4 SWOT analýza .. 24

12 Projektový tým .. 25
 12.1 Zhotovitel projektu .. 25
 12.2 Výběrové řízení ... 26
 12.3 Podmínky investora a zhotovitele ... 28

13 Realizace projektu ... 28
 13.1 Územní souhlas .. 28
 13.2 Žádost o připojení k distribuční společnosti ... 28
 13.3 Zhotovení projektové dokumentace .. 29
 13.4 Rekonstrukce střech ... 29
 13.5 Statické posudky (vyjádření statika k rekonstrukci budov) 29
 13.6 Realizace stavby .. 30
 13.7 Revize ... 30
 13.8 Licence ERÚ ... 30
13.9 Zapojení elektrárny a zkušební provoz ... 30
13.10 Uzavření smlouvy s distribuční společností .. 31
13.11 Předání díla a spuštění ostrého provozu ... 31
14 Harmonogram projektu ... 31
15 Rozpočet projektu .. 34
16 Forma výkupu vyrobené elektřiny .. 35
 16.1 Srovnání ... 35
 16.1.1 Zelený bonus .. 36
 16.1.2 Výkupní cena ... 37
17 Financování .. 38
 17.1 Podmínky úvěrování v oblasti fotovoltaiky .. 39
 17.2 Konkrétní nabídky oslovených bank .. 40
 17.2.1 KB .. 40
 17.2.2 Česká spořitelna .. 40
 17.2.3 ČSOB ... 41
 17.3 Srovnání poskytnutých nabídek se samofinancováním 41
18 Finanční analýza .. 42
 18.1 Návратnosti investice ROI ... 42
 18.2 Doba návratnosti investice ... 43
 18.3 Návratnost investice při zohlednění solární daně 43
 18.4 Návratnost investice bez zohlednění solární daně 45
 18.5 Porovnání návratnosti investice ... 47
19 Rizika ... 47
20 Závěr ... 49
Seznam použité literatury ... 50
Seznam obrázků ... 52
Seznam tabulek .. 52
Seznam grafů ... 52
Seznam příloh ... 53
1 Úvod

V dnešní době je stále více dbáno na ochranu životního prostředí a ekologie se stává součástí života každého z nás. S ohledem na tuto skutečnost je podporována i výroba elektřiny z obnovitelných zdrojů, která je nezávadnou formou výroby elektřiny, a proto jsem se rozhodla zabývat tímto tématem.

Pracuji jako asistentka ředitele ve společnosti, která vlastní fotovoltaickou elektrárnu (dále jen FVE). Mou pracovní náplní je mimo jiné, zajišťování fakturace za vyrobenou elektřinu a drobná administrativa, která je spojena s vlastnictvím FVE. Ve společnosti zatím nepracuji příliš dlouho, problematiku fotovoltaiky jsem do této doby vnímala pouze okrajově a s tímto tématem jsem se setkávala pouze z médií. Proto jsem si zvolila toto téma pro vypracování bakalářské práce, protože rozšíření teoretických i praktických vědomostí a znalostí v tomto oboru mi může pomoci pochopit všechny aspekty, které jsou pro projektování a následný provoz FVE důležité.

Cílem bakalářské práce je charakterizovat a ukázat jednotlivé části projektového řízení na skutečném projektu, kterým je FVE realizovaná v roce 2010 v Josefově Dole u Mladé Boleslavi. Důvodem výběru projektování FVE v roce 2010 je skutečnost, že v roce 2010 byla velmi příznivá doba pro výstavbu FVE a v této oblasti nastal obrovský rozvoj, což vedlo k nekontrolovanému růstu FVE v České republice. Na tomto projektu mohu dále ukázat, co vše obnáší projektové řízení ve výstavbě.

Obsahem bakalářské práce bude popsat problematiku projektové řízení z teoretického hlediska a zaměřit se na tu oblast projektového řízení, která bude posléze v praktické části aplikována na konkrétní části projektové výstavby FVE. Ve své práci se budu z teoretického pohledu zabývat také obecným popisem skutečností, které blízce souvisí s fotovoltaikou a výrobou elektřiny z obnovitelných zdrojů. V praktické části se zaměřím na popis subjektů, které se v projektu vyskytují, popišu jednotlivé fáze a soustředím se konkrétně na podporu FVE ze strany státu, na jejich financování a na rizika, která mohou nastat. Pomocí propočtů budu analyzovat výhodnost výstavby FVE v roce 2010 a porovnám ji se změnami, které od té doby ve fotovoltaickém průmyslu nastaly. Dále zde posuzuji rentabilitu a úspěšnost projektu jako celku, což považuji za hlavní cíl mé bakalářské práce.
2 Projektové řízení

Projektové řízení, často také nazývané projektový management, je souhrn modelů, metod, postupů, nástrojů a technik. Zabývá se produkčním systémem, pomocí kterého jsou realizovány jedinečné výstupy. Můžeme jej definovat jako způsob řízení projektů, v kterém jedinci využívají svých vědomostí k realizaci projektů. Jedná se o velmi účinný nástroj řízení, pomocí něhož manažeři dosahují odpovídající kvality výstupu s minimálními náklady, v co nejkratším časovém úseku a za použití specifických metod.¹

2.1 Co je projekt

Jedná se o proces koordinovaných a řízených činností, kde je definován začátek a konec a tyto aktivity směřují k naplnění jedinečného cíle. Projekt bývá vymezen časem, financemi, lidskými a materiálovými zdroji. Za realizaci projektu zodpovídá projektový tým, který by se měl snažit udržovat rovnováhu mezi jednotlivými parametry, kterými jsou právě náklady, čas a kvalita.

Obrázek 1: Projektový trojúhelník

Jako přesnou definici můžeme uvést že „Projekt je prostorově a časově ohraničený soubor technologicky a organizačně souvisejících činností, jehož účelem je dosažení stanoveného cíle při zadaném čase, zdrojích, nákladech a kvalitě“.

2.2 Charakteristické rysy projektu

Projekt je vymezen charakteristickými znaky, které jsou společné pro každý typ projektu. Těmito vlastnostmi jsou:

- časové vymezení - projekt má stanovený začátek a konec
- zdroje pro realizaci projektu jsou omezeny
- má jen jediný výsledek
- zahrnuje určitý stupeň rizika a nejistoty
- zahrnuje řadu vzájemně se ovlivňujících činností různého druhu

2.3 Cíl projektu

Zásadní význam má vytýčení cílů projektu, což je slovní popis účelu, jehož má být dosaženo během realizace. Většinou se jedná o definici stavů a vlastností, které popisují budoucí výsledek a stávají se centrálním bodem pro komunikaci, plánování, volbu postupů a metod. Často bývá stanoven jeden hlavní cíl, který určuje celkový směr projektu a jeho konečný výsledek.

Pro formulaci cílů projektu se často využívá metoda SMART, která nám říká, že cíle mají být specifické a konkrétní, měřitelné, akceptovatelné, realistické a měřitelné v čase.

3 Projektový tým

Můžeme definovat jako fungování pracovníků, kteří se společně podílejí na realizaci projektu a snaží se dosáhnout vytýčených cílů. Nezáleží pouze na výkonu jednotlivců, ale na jejich fungování jako celku, tzn. na vzájemné informovanosti, komunikaci a koordinaci stanovených činností.

4tamtéž
Svoji specifickou roli má vedoucí projektu, který má odpovědnost za projekt jako celek. Jeho úkolem je plánování, organizování, vedení projektového týmu a kontrolova se stanoveným plánem.

4 Harmonogram projektu

Harmonogram projektu je vymezení pro časový plán a ukazuje, jak je na projekt nahlíženo z časového hlediska. Při tvorbě harmonogramu je důležité definovat činnosti určené k realizaci v návaznosti na strukturu projektu. Harmonogram obsahuje rozpis jednotlivých činností, délku trvání činností a důležité milníky v projektu. Tyto činnosti musí být realizovány v určitém pořadí a musí na sebe navazovat.

Harmonogram je většinou vyjádřen pomocí Ganttova diagramu, jehož úkolem je zobrazení vztahů mezi činnostmi a časem. Informuje nás o době trvání jednotlivých činností a poskytuje předpověď celkové doby trvání projektu.

Ganttův diagram je horizontální úsečkový graf, na jehož horizontální ose je období trvání projektu vyjádřené ve stejnéch časových jednotkách, které mohou být s přesností na hodiny, dny a týdny. Na svislé ose jsou seřazeny po sobě jdoucí činnosti, na které se projekt rozpadá a jsou rozděleny do určitých úrovní, podle náročnosti projektu. Na ploše grafu jsou činnosti vymezeny obdélníky, které přesně ukazují počátek a konec stanovených činností. Přehledně lze z Ganttova diagramu identifikovat kritickou cestu, na které je doba trvání projektu striktně závislá. Kritická cesta projekt časově ohraničuje a při prodloužení jedné z kritických činností dochází k prodloužení celkové doby trvání projektu.

5 Řízení rizik

Každý projekt je spojen s určitými riziky podle svého zaměření. Záměrem řízení rizik je tato rizika včas identifikovat a analyzovat tak, abychom jim mohli včas předejít. Riziko můžeme definovat jako jev nebo stav nejistoty nebo nebezpečí ze vzniku ztráty,

odchýlení se od očekávaných výsledků nebo chybného rozhodnutí. Většinou se jedná o jev, který má negativní dopad na projekt.

Hodnota rizika je dána pravděpodobností vzniku a velikostí jeho dopadu, které mohou být popsány verbálními pojmama jako velmi vysoké, vysoké, střední, nízké a velmi nízké. Tuto pravděpodobnost bychom se měli snažit určit u každého z identifikovaných rizik a zaujmout opatření v případě, že by riziko opravdu nastalo.7

6 Financování a náklady projektu

Jedním z nejdůležitějších faktorů při výstavbě projektů je jejich financování. Příprava i realizace projektu vyžaduje velký podíl finančních zdrojů, bez kterých by nemělo smysl s projektem začínat. Je tedy důležité stanovit předběžné náklady projektu a zvážit možnosti, kterými může být financován.

Pro realizaci projektu je nutné brát v úvahu jeho životní cyklus a předpokládanou návratnost vložených finančních zdrojů.

6.1 Náklady projektu

Náklady projektu, můžeme rozdělit do tří skupin, podle jejich zaměření.8

Nepřímé provozní náklady

Jedná se o náklady, které nejsou nebo nemohou být jednoznačně přiřazeny ke konkrétní činnosti daného projektu a jde zpravidla o administrativní činnost.

Přímé provozní náklady

Jsou náklady, které můžeme přiřadit k určité konkrétní aktivitě projektu. Jedná se o náklady na vlastní zaměstnance, externí členy týmu a režijní náklady s tím spojené.

Investiční náklady

Náklady nezbytně nutné k realizaci projektu: náklady na stroje, technologie, software, rekonstrukce a výrobní komponenty.

V případě projektování FVE patří mezi investiční náklady, fotovoltaické panely, střídače napětí, nosné konstrukce, montáž, služby a legislativní poplatky.

Obrázek 2: Rozložení investičních nákladů při pořízení FVE

Typické rozložení investičních nákladů na pořízení fotovoltaické elektrárny

Zdroj: Interní zdroj společnosti

6.2 Zdroje financování

Financování dlouhodobých investic se stává kritickým bodem mnoha investorů, protože by z větší části měly být kryty vlastními zdroji, které není ve většině případů možné vynaložit. Důležitý podíl na financování projektů mají také zdroje cizí, které se často považují za levnější a mnohdy jsou pro zdraví společnosti považovány za prospěšné.

6.2.1 Vlastní zdroje

Financování vlastními zdroji je vhodné hlavně pro společnosti, které disponují větším množstvím finančních prostředků a hledají příležitosti jak je investovat a zhodnotit. Nejčastějším vlastním zdrojem financování těchto společností je zisk z minulých let, navýšení základního jmění vklady společníků nebo případně emise akcií.
Častěji se však setkáváme se skutečností, že společnosti dostatečný finanční kapitál pro investici nemají a případné větší vynaložení vlastních prostředků by mohlo ohrozit jejich stabilitu.⁹

6.2.2 Cizí zdroje

V dnešní době mají společnosti možnost výběru z velké škály financování cizími zdroji. Je však nutné brát v úvahu, jakou mírou toto financování zvyšuje zadluženost společnosti. Mezi nejčastější formy financování cizími zdroji patří bankovní a obchodní úvěry, finanční, operativní či zpětné leasingy, dluhopisy a v poslední době také franchizing či rizikový kapitál.¹⁰

6.2.3 Podpora z veřejných zdrojů a zdrojů Evropské unie

Jedná se o formu přímé podpory, která je poskytována ze státního rozpočtu nebo z programů EU na určitý účel, tzv. úcelové dotace.

Přímé investiční dotace na výstavbu FVE byly poskytovány pouze ze začátku rozvoje fotovoltaického průmyslu v ČR a jejich poskytování bylo zastaveno v roce 2009.¹¹ V současné době nejsou žádné dotační prostředky k dispozici a předpokládá se, že ani v budoucnu nebude dotace na výstavbu FVE poskytovány.¹²

7 Microsoft Project

Pro plánování, sledování a řízení projektů a ke komunikaci s projektovým týmem slouží mnoho projektových aplikací. Mezi nejvýznamnější však řadíme Microsoft Project, který zapadá mezi aplikace sady Microsoft Office, ale není součástí žádné edice aplikací Office. Je tedy k dispozici pouze samostatně a jeho efektivní využití vyžaduje znalosti v oblasti projektového řízení.

¹⁰tamtéž

Microsoft Project slouží k plánování projektů, kontrole termínů, přiřazování zdrojů a sledování jejich využití. Umí přehledně zobrazit kritickou cestu a různé pohledy na projekt jako celek.

Rozlišujeme tři úrovně programu dle jeho využití. Standard, sloužící pro občasnou tvorbu projektů, Professional, kterou využívají profesionální projektoví manažeři a úroveň Project Server, která je využívána k řízení rozsáhlych projektů.\(^\text{13}\)

7.1 Výhody programu Microsoft Project

Jednoduchost

Práce v programu Microsoft Project je srovnatelná a podobná práci v Excelu a nachází se zde předdefinované šablony, které usnadňují práci a umožňují vytvořit profesionální projekt.

Automatické doplňování termínů

Po vyplnění délek jednotlivých úkolů Project automaticky doplní, odkdy úkol potrvá a dokáže eliminovat případná prodloužení mezi jednotlivými úkoly.

Týmové plánování a spolupráce

Project dokáže zobrazit zdroje a účastníky projektu a jim přiřazené úkoly v časové ose. Můžeme přehledně vidět vytíženost jednotlivých účastníků a optimalizovat přiřazené pracovní činnosti. Každý z účastníků může pomocí zobrazení BackStage publikovat na server SharePoint stav prací na jeho části projektu.\(^\text{14}\)

8 Obnovitelné zdroje

V dnešní době je kladen velký důraz na ochranu životního prostředí a ochranu klimatu. Dochází také ke snížování zásob fosilních zdrojů a zároveň celosvětově roste spotřeba energií, a proto je nutné zaměřit se na využívání obnovitelných zdrojů energie.\(^\text{15}\)

Obnovitelnými zdroji se rozumí obnovitelné nefosilní přírodní zdroje energie, jimiž jsou energie větru, energie slunečního záření, geotermální energie, energie vody, energie půdy, energie vzduchu, energie biomasy, energie skládkového plynu, energie kalového plynu a energie bioplynu.16

Obrázek 3: Produkce elektřiny z obnovitelných zdrojů v letech

16Zákon o podpoře výroby elektřiny z obnovitelných zdrojů energie a o změně některých zákonů. In: Sbírka zákonů č. 180/2005.

8.1 Solární energie

Ve své bakalářské práci se zabývám výstavbou FVE, proto se stručně zaměřím na popis energie ze slunečního záření.

Na všech energiích, které jsou na Zemi k dispozici, se podílí sluneční energie. Pod pojmem solární energie si většina z nás představí sluneční paprsky. Solární energie se ale nachází i v mnoha jiných formách, kterými jsou např. energie přeměněná na teplo k udržení života na Zemi, energie uložené do těl rostlin při fotosyntéze, které se postupem času změnila ve fosilní paliva.
Rozeznáváme dvě podoby využití sluneční energie. Podobu nepřímou, do které patří biomasa, fosilní paliva, vodní a větrná energie a podobu přímou, kde se sluneční energie přeměňuje na teplo nebo elektřinu.¹⁷

9 Fotovoltaika

Fotovoltaikou rozumíme využívání slunečního záření a jeho přeměny pomocí technického zařízení k výrobě tepla a energie. Tuto vědu chápeme jako technologii, která má neomezený růstový potenciál a časově neomezenou možnost výroby elektrické energie. V dnešní době již fotovoltaiku vnímáme jako vyspělé průmyslové odvětví, ve kterém dochází ke snížení výrobních nákladů, úspore materiálu a maximalizaci využití energie.¹⁸

9.1 Historie

Fotovoltaika vešla do našeho podvědomí až v posledních letech, ale její historie se datuje již do první poloviny 19. století.

Stěžejní rozvoj fotovoltaiky nastal v 50 letech při nástupu kosmického výzkumu, kdy fotovoltaické články našly první praktické použití pro napájení satelitů.¹⁹

9.2 Charakteristika fotovoltaických systémů

Fotovoltaika využívá přeměny slunečního záření na elektrickou energii v solárním článku, jehož základním požadavkem je schopnost pohltit co největší množství slunečního záření a co nejlépe využít energii fotonů.

Zapojením solárních článků vzniká solární panel, který by měl být co nejvíce odolný vůči mechanickému a klimatickému poškození, např. vůči silnému větru, krupobití, mrazu atd.

Zapojením fotovoltaických panelů vznikají fotovoltaické systémy, které můžeme rozdělit do tří skupin. Patří mezi ně drobné aplikace, které tvoří nejmenší podíl na fotovoltaickém trhu a jedná se převážně o nabíjecí zařízení pro okamžité dobíjení akumulátorů (mobilních telefonů, notebooků, fotoaparátů atd.). Další skupinou jsou ostrovní systémy používané v místech, kde není rozvodná síť a je potřeba střídavé napětí. Obvykle se budou na místech, kde není možné vybudovat elektrickou připojku (chaty, zahradní svítidla, karavany, světelné reklamy). V oblasti s hustou sítí elektrických rozvodů dominiuje výstavba síťových systémů, které fungují zcela automaticky díky řízení síťového střídače. Připojení k síti podléhá schvalovacímu řízení u jednotlivých distribučních společností. Výkon solárních systémů, který jsou připojeny k distribuční síti je v rozmezí jednotek kilowatt až jednotek megawatt (střechy rodinných domů, fasády a střechy budov, protihlukové bariéry, FVE na volně ploše).\(^{20}\)

Tento systém je využíván i při výstavbě FVE v Josefově Dole, kterou se ve své práci zabývám.

Výkon FVE je závislý na lokalitě, ročním období, četnosti slunečního záření (viz obrázek 4), velikosti FVE a sklonu fotovoltaických panelů.

10 Legislativa

Veškeré podnikání v ČR upravují vyhlášky a zákony obsažené ve sbírce zákonů. Podmínky podnikání, správu a povinnosti fyzických a právnických osob v energetických odvětvích upravuje energetický zákon č. 458/2000 Sb.

Nejvýznamnější roli v podnikání v oblasti s obnovitelnými zdroji hraje zákon o podpoře elektřiny z obnovitelných zdrojů, jehož úkolem je podpora obnovitelných zdrojů energie a zajištění zvyšování využití obnovitelných zdrojů na spotřeby elektrické energie. Podpora je závislá na druhu obnovitelného zdroje a výkonu výroby. Podle tohoto zákona jsou provozovatelé distribučních sítí (ČEZ, EON, PRE) povinni vykupovat energii, na kterou se vztahuje podpora a uzavřít smlouvu o dodávce elektrické energie.

Vyrobenou elektrickou energii může výrobce prodat za pevnou výkupní cenu nebo ji lze spotřebovat v rámci režimu zelených bonusů. Tyto možnosti však nelze kombinovat. Pokud výrobce zjistí, že mu daná forma výkupu energie nevyhovuje, může ji jednou ročně změnit. Tato změna se musíahlásit do konce listopadu příslušného kalendářního roku, aby mohl být tarif k 1. 1. následujícího roku změněn.\(^{21}\)

\(^{21}\)Vyhláška č. 475/2005 Sb. prováděcí vyhláška zákona o podpoře využívání obnovitelných zdrojů. In: Sbírka zákonů 475/2005
Sazba garantované výkupní ceny a zelených bonusů je určena podle dvou hlavních kritérií. Záleží na výkonu FVE, podle kterého jsou rozděleny do dvou skupin. FVE s výkonem do 30 kWh a FVE s výkonem nad 30 kWh. Dalším důležitým hlediskem je, v kterém roce byla FVE uvedena do provozu. Podle toho se dané sazby liší (viz příloha 1).

10.1 Garantovaná výkupní cena

Při výkupu elektrické energie formou garantované výkupní ceny je zajištěn odkup veškeré vyrobené elektrické energie za cenu stanovenou Energetickým regulačním úřadem platnou v roce uvedení výrobního provozu. Cena je platná po dobu životnosti FVE a kupujícím je v tomto případě provozovatel přenosové nebo distribuční soustavy. Výhodou prodeje elektrické energie touto formou je větší jistota, stabilní výnosy a vyšší výkupní cena. Nevýhodou je nutnost i nadále platit za odebranou elektřinu.

10.2 Režim zelených bonusů

U tohoto způsobu je do distribuční sítě dodávána pouze ta část elektřiny, kterou provozovatel FVE nedokáže sám spotřebovat. Provozovatel si musí sám najít odběratele, kterému může přebytky elektrické energie prodat, za předem sjednanou cenu. Zelený bonus je jistá prémie za to, že elektrická energie byla vyrobená ekologickým způsobem a vyplácí ho regionální provozovatel distribuční soustavy. Tato cena náleží provozovateli za celkovou vyrobenou elektřinu. Výhodou zeleného bonusu je, že neplatíte za spotřebovanou elektřinu a úspora z této spotřeby se tedy přičte k zisku. Za nevýhodu považuji nižší sazbu zeleného bonusu oproti výkupní ceně a riziko, že se nemusí podařit přebytečnou energii prodat.

10.3 Solární daň

Největší negativní změnou pro provozovatele FVE bylo zavedení srážkové daň z elektriny ze slunečního záření, ke kterému došlo kvůli nezvládnutému rozvoji FVE. Při stále navýšujícím se počtu FVE by mohlo dojít k nadměrnému zvýšení elektřiny

24 tamtéž
pro ostatní spotřebitele (domácnosti a podniky) na něž distributorské společnosti přeúčtovávají náklady spojené s výkupem energie z FVE.

Sazba je v případě výkupní ceny 26 % a v případě zeleného bonusu 28 % a je odváděna každý kalendářní měsíc. ²⁵

Protest proti zavedení solární daně byl vyjádřen majiteli solárních elektráren podáním správní žaloby, kterou projednává Ústavní soud.

11 Charakteristika projektu

Investorem je právnická osoba, která má ve vlastnictví nemovitý majetek, kterými jsou budovy a pozemky v bývalém průmyslovém areálu TIBA v Josefově Dole. V současnosti není areál pro průmyslovou výrobu využíván a investor zvažuje možnosti dalšího využití. Rozhodl se areál revitalizovat a vybudovat na střechách objektů FVE a celý areál tím zhodnotit. Současné využití průmyslových budov je omezené a jsou pronajímány pouze jako sklady.

11.1 Popis areálu – Josefův Důl

Josefův Důl leží na levém břehu řeky Jizery, 5 km severozápadně od centra Mladé Boleslavi. Areál se nachází na okraji obytné zóny obce s napojením na železniční a silniční dopravu. Celková rozloha areálu činí více než 11 ha, zastavěná plocha budov (výroba, sklady, administrativa) představuje cca 35 000 m².²⁶

Po předem domluvené schůzce se správcem areálu jsem se podrobita podrobné prohlídce, abych si udělala přehled o velikosti objektu, stavu a využití budov, které se v Josefově Dole nacházejí. V areálu se nachází 42 hlavních objektů, které můžeme rozdělit do následujících skupin (viz tabulka 1).

²⁶ Interní studie společnosti
Tabulka 1: Přehled budov

<table>
<thead>
<tr>
<th>Budovy</th>
<th>Počet</th>
<th>Plocha objektů (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktuálně pronajímané</td>
<td>15</td>
<td>20 705</td>
</tr>
<tr>
<td>Určené k pronájmu</td>
<td>4</td>
<td>7 109</td>
</tr>
<tr>
<td>K demolici</td>
<td>15</td>
<td>3 126</td>
</tr>
<tr>
<td>Ve výrazně špatném technickém stavu</td>
<td>5</td>
<td>3 404</td>
</tr>
<tr>
<td>Ostatní</td>
<td>3</td>
<td>243</td>
</tr>
<tr>
<td>Celkem</td>
<td>42</td>
<td>34 587</td>
</tr>
</tbody>
</table>

Zdroj: vlastní, dle interní studie

11.2 Záměr projektu

Záměrem projektu je využití výroby elektřiny z obnovitelných zdrojů energie, která je šetrná k životnímu prostředí a vzhledem k ekologickému způsobu její výroby je podporována státem. Investorovi se tak nabízí možnost, využít efektivně prostorů na střechách k vybudování FVE, kterou zhodnotí areál a vyrobenou elektřinu bude moci prodávat nájemcům v Josefově Dole.

11.3 Cíl projektu

Cílem projektu je dosáhnout výstavby FVE v co nejkratším časovém horizontu, tak aby byla stavba dokončena a uvedena do provozu včetně všech administrativních záležitostí do 31. 12. 2010. Dalším úkolem je stanovit náklady, které by neměly přesáhnout částku 80 mil korun, kterou má investor k dispozici a eliminovat rizika, která by mohla během projektu nastat.

11.4 SWOT analýza

Z mého pohledu, je u tak velkého projektu, jakým je bezpochyby výstavba FVE, důležité sestavit podrobnou analýzu „SWOT“, která identifikuje silné a slabé stránky, příležitosti a hrozby projektu. Rozhodla jsem se zpětně SWOT analýzu pro FVE realizovanou v r. 2010 sestavit, abychom mohli lépe nahlížet na perspektivu vybudovaného projektu.
Předběžné sestavení SWOT analýzy je pro investora zásadní z toho důvodu, že může posoudit negativní a pozitivní stránky projektu a je na něm, aby zvážil efektivnost realizace FVE.

Tabulka 2: SWOT analýza

<table>
<thead>
<tr>
<th>SILNÉ STRÁNKY</th>
<th>SLABÉ STRÁNKY</th>
</tr>
</thead>
<tbody>
<tr>
<td>výběr zkušeného projektového týmu</td>
<td>vysoká počáteční investice</td>
</tr>
<tr>
<td>nízká údržba po nainstalování FVE</td>
<td>nutná rekonstrukce kuli zatížení FVE panely</td>
</tr>
<tr>
<td>nízká návratnost investice (v případě včasného uvedení do provozu)</td>
<td>vznik ztrát, při převodu stejnosměrného proudu na střídavý</td>
</tr>
<tr>
<td>pravidelné zajištění revize</td>
<td>nízká výkonnost při špatném počasí</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PŘÍLEŽITOSTI</th>
<th>HROZBY</th>
</tr>
</thead>
<tbody>
<tr>
<td>přispění k ochraně životního prostředí</td>
<td>hrozba živelných pohrom (vitr, sníh)</td>
</tr>
<tr>
<td>využití garantovaných výkupních cen a zelených bonusů</td>
<td>možná přičina požáru při nekvalitní instalaci</td>
</tr>
<tr>
<td></td>
<td>vandalismus</td>
</tr>
<tr>
<td></td>
<td>snížení výkupních cen v dalších letech</td>
</tr>
</tbody>
</table>

Zdroj: vlastní

12 Projektový tým

Výběr projektového týmu patří mezi nejdůležitější kroky k úspěšné realizaci celého projektu. Vedoucí projektu byl vybrán na základě kladných referencí a společně s investorem rozhodl o externím dodání fotovoltaických panelů a zároveň se podílel na výběru zhotovitele projektu. Jeho hlavním úkolem bude provádět stavební dozor během realizace.

12.1 Zhotovitel projektu

V době velkého rozvoje fotovoltaických parků v roce 2010 panovala velká konkurence jak mezi dodavateli technologií, tak mezi zhotoviteli fotovoltaických projektů. Na základě toho jsem se rozhodla zpětně zrekonstruovat výběrové řízení na zhotovitele projektu. Důvodem výběrového řízení je udělat si komplexnější pohled na jednotlivé nabídky od různých společností a porovnat nabízené podmínky, protože oslovení pouze jedné společnosti je dle mého názoru pro investora riskantní.

12.2 Výběrové řízení

Pro výběrové řízení jsem se rozhodla vybrat níže zmíněné společnosti, o kterých při realizace FVE v roce 2010 investor uvažoval, jako o možných oslovených zhotovitelích.

Výběrového řízení by se mohlo účastnit více společností, ale pro ukázkovou zvolím, že tyto tři společnosti by postoupily do posledního výběrového kola.27 28

- Solar Center, a. s.
- Isofen Energy s. r. o.
- Energy Expert s. r. o.

SOLAR CENTER, a. s.

Nabízí posouzení vhodnosti střech k instalaci solárních panelů, vypracování projektové dokumentace, zpracování energetických studií, zastupování na úřadech při vyřizování potřebných povolení, dodávka a instalace fotovoltaických modulů. Zaručuje minimalizaci přenosových a výkonových ztrát, zajištění kvalitních a ověřených komponentů, bezstarostný provoz a údržbu, záruční a pozáruční servis, zastoupení při vyřízení žádostí o připojení k distribuční soustavě.

Cena za dílo: 30 mil. Kč

Doba realizace: odhadovaná doba do 90 dní29

27V nabídách nejsou zohledněny ceny fotovoltaických panelů, které bylo výhodnější dodat externě
28Oslovila jsem výše zmíněné společnosti, ale bohužel mi nemohly konkrétní nabídky k výstavbě FVE nad 30 kWh, protože v současné době se tyto velké projekty nerealizují. Nabídky jsou tedy fiktivní, ale odpovídají realitě.
ISOFEN ENERGY s. r. o.

Poskytne veškerou podporu, pomoc a informace k výběru nejvhodnějších solárních panelů, zpracování ekonomické rozvahy, dodávku a montáž. Zavazuje se zajistit veškerou agendu potřebnou k započetí stavby (stavební povolení, statické posudky, energetické posudky). Zastoupení zákazníka při podání žádostí k připojení k distribuční společnosti. Dále nabízí sběr dat z fotovoltaického systému, pravidelnou revizi a údržbu FVE.

Cena za dílo: 29 mil Kč

Doba realizace: odhadovaná doba realizace 90 dnů

ENERGY EXPERT s. r. o.

Nabízí provedení ekonomické a technické analýzy, poskytuje daňový a právní poradenství, zajišťuje energetický audit. Dále zajišťuje zpracování realizační projektové dokumentace, zastupuje zákazníka při řízení o stavební povolení, zajištění statického posudku a zastupuje zákazníky při podání žádostí o připojení výrobny k distribuční soustavě. Ve spolupráci s dalšími partnery zajišťuje dodávku výrobních, řídících, měřicích a komunikačních technologií. Na projektech spolupracuje se společností CE Solar.

Cena za dílo: 27 mil Kč

Doba realizace: odhadovaná doba realizace do 90 dnů

Výše zmíněné nabídky společností jsou v obsahu činností a v době zhotovení srovnatelné, ale jako nejattractivejší se mi jeví nabídka společnosti Energy Expert s. r. o., u které hraje největší roli nejnižší cena, získané kladné reference a spolupráce se společností CE Solar, která se rozsahem svých realizací řadí mezi hlavní subjekty v tomto oboru v České republice.

31*Interní zdroj společnosti*

12.3 Podmínky investora a zhotovitele

Podmínky o zhotovení FVE jsou dohodnuty mezi investorem a zhotovitelem ve Smlouvě o dílo, která obsahuje identifikace obou stran, předmět díla, cenu za dílo, termín dokončení a další náležitosti, které by měla smlouva obsahovat.

13 Realizace projektu

Dále stručně charakterizuji jednotlivé etapy projektu.

13.1 Územní souhlas

Ve většině případů je nutné vést územní řízení o územním rozhodnutí k souhlasu pro stavbu FVE, ke kterému je nezbytnou nutností také projektová dokumentace k územnímu řízení. V našem případě je dostávající územní souhlas stavebního úřadu, protože se jedná o stavbu na střechách budov. Následujícím krokem je poté oznámení o zahájení stavby.

Žádost o územní souhlas byla podána na magistrátu města Mladá Boleslav a na jejím základě byl udělen souhlas dne 30. 4. 2010.

Dalším krokem je výběr vedoucího projektu a výběr zhotovitele projektu (viz kapitola 12.2 Výběrové řízení).

13.2 Žádost o připojení k distribuční společnosti

Žádost o připojení se podává na základě formulářů jednotlivých distribučních společností, které jsou povinny zaujmout stanovisko do 30 dnů od podání žádosti (viz příloha 2) Během vyřizování žádosti můžeme začít vyřizovat projektovou dokumentaci.
13.3 Zhotovení projektové dokumentace

Projektová dokumentace musí být vypracována na základě podkladů platných v době jeho vypracování a jejím obsahem je definování účelu stavby, kterým je rekonstrukce objektů pro výstavbu FVE.

V projektové dokumentaci pro výstavbu FVE se nachází původní statické posudky, na jejichž základě bylo rozhodnuto o nutnosti rekonstrukci střech.

13.4 Rekonstrukce střech

Vzhledem k tomu, že střechy na vybraných objektech v Josefově Dole se nacházejí ve zchátralém stavu, je nutné provést rekonstrukci střech, aby bylo možné instalovat nosné konstrukce.

Po dohodě se zhotovitelem byla pro rekonstrukci střech pověřena společnost ALFA CZ s. r. o., která se zavazuje konzultovat veškeré úpravy s investorem a zhotovitelem projektu.

Předmětem rekonstrukce je dodání stavebního materiálu a zajištění kompletní dodávky prací pro opravu a montáž střech na vybraných objektech způsobem, který umožní zhotovení FVE. Konkrétní způsob oprav a montáži bude upřesněn po odkrytí dosavadních střešních krytin na budovách.

13.5 Statické posudky (vyjádření statika k rekonstrukci budov)

Ve statickém posudku je definováno, zda jsou konstrukce střech schopny přenést přetížení fotovoltaickými panely. Podkladem k odbornému vyjádření je podrobná prohlídka provedená se zástupcem společnosti ALFA CZ, který provede rekonstrukci střešních plášťů. Předmětem vyjádření statika bude popis u jednotlivých budov a výsledkem bude schopnost střech přenést přetížení fotovoltaickými panely.

Vzhledem k tomu, že neexistuje původní projektová dokumentace železobetonových skeletů, ze kterých by bylo možné získat podklady pro posouzení únosnosti statickým výpočtem, je únosnost posouzena pomocí srovnání původního zatižení plášťů se zatížením plášťů rekonstruovaných.
Výsledek statického řízení byly všechny střechy shledány jako způsobilé přenést přetížení fotovoltaickými panely.\footnote{Interní zdroj společnosti}

13.6 Realizace stavby

Veškeré práce při realizaci stavby budou probíhat postupně, a to v návaznosti na předem provedené opravy střech a statické posudky. Tyto tři etapy budou prováděny jednotlivě na každém objektu zvlášť, proto i doba jejich dokončení bude různá a z toho důvodu se budou na sebe navazující etapy prolínat.

Jedná se o práce na změnách v trafostanici, výstavbě přípojných míst, montáži síťového transformátoru, instalaci nosných konstrukcí, instalaci solárních panelů a připojení na síť.

13.7 Revize

Revizní technik prověří bezpečnost a správnost nainstalovaných fotovoltaických komponentů.

13.8 Licence ERÚ

ERÚ, je zkratkou pro Energetický regulační úřad, který je správním úřadem pro regulaci energetiky v České republice. Rozhoduje o udělení licence, která je nutným předpokladem pro podnikání v tomto odvětví.

Žádost o udělení licence je nutné podat na platném formuláři se všemi náležitostmi (viz příloha 3). Do 30 dnů od podání žádosti obdržíme rozhodnutí o udělení licence. V našem případě byla udělena licence na 25 let ode dne vzniku oprávnění k licencované činnosti.

13.9 Zapojení elektrárny a zkušební provoz

Zapojení elektrárny proběhne na základě žádosti o první paralelní připojení, kterou podáme příslušné distribuční společnosti. Na základě této žádosti bude poté připojeno nejprve 50 % celkového instalovaného výkonu na síť a poté bude připojeno celých 100 % instalovaného výkonu.
13.10 Uzavření smlouvy s distribuční společností

Jako distribuční společnost byla vybrána společnost ČEZ, se kterou je uzavřena smlouva o podpoře výroby elektřiny. V této smlouvě si investor zvolí způsob režimu podpory, kterým je v našem případě zelený bonus. Důvodem pro výběr zeleného bonusu, je prodej energie třetím stranám.

Sazba zeleného bonusu je 11,18 Kč/kWh pro FVE s instalovaným výkonem nad 30 kWh uvedených do provozu od 1. 1. 2010 - 31. 12. 2010.33

V této smlouvě budou dále stanoveny další podmínky, týkající se měsíční fakturace, vyplňování výkazů, atd.34

13.11 Předání díla a spuštění ostrého provozu

Zhotovitel předá dílo investorovi na základě předávacího protokolu.

14 Harmonogram projektu

Investor měl k dispozici pouze harmonogram stavebních a instalačních prací, ale já se domnívám, že je důležité získat celkový pohled na dobu trvání projektu z pohledu investora, tj. od první myšlenky, kdy investora napadlo FVE zrealizovat, až ke konečnému dokončení díla a předání stavby.

Tabulka 3: Harmonogram činností

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výstavba FVE</td>
<td>185 days</td>
<td>Fri 23.4.10</td>
<td>Thu 6.1.11</td>
</tr>
<tr>
<td>Začátek prací</td>
<td>0 days</td>
<td>Fri 23.4.10</td>
<td>Fri 23.4.10</td>
</tr>
<tr>
<td>Žádost na stavební úřad + územní souhlas</td>
<td>6 days</td>
<td>Fri 23.4.10</td>
<td>Fri 30.4.10</td>
</tr>
<tr>
<td>Výběr vedoucího projektu</td>
<td>1 day</td>
<td>Fri 23.4.10</td>
<td>Fri 23.4.10</td>
</tr>
<tr>
<td>Výběr zhotovitele projektu</td>
<td>5 days</td>
<td>Mon 26.4.10</td>
<td>Fri 30.4.10</td>
</tr>
<tr>
<td>Žádost o připojení FVE k distribuční síti</td>
<td>21 days</td>
<td>Mon 3.5.10</td>
<td>Mon 31.5.10</td>
</tr>
<tr>
<td>Zpracování projektové dokumentace</td>
<td>35 days</td>
<td>Mon 3.5.10</td>
<td>Fri 18.6.10</td>
</tr>
<tr>
<td>Rekonstrukce střech</td>
<td>39 days</td>
<td>Mon 21.6.10</td>
<td>Thu 12.8.10</td>
</tr>
<tr>
<td>Statické posudky</td>
<td>26 days</td>
<td>Fri 13.8.10</td>
<td>Fri 17.9.10</td>
</tr>
<tr>
<td>Realizace stavby</td>
<td>37 days</td>
<td>Mon 20.9.10</td>
<td>Tue 9.11.10</td>
</tr>
<tr>
<td>Revize</td>
<td>3 days</td>
<td>Wed 10.11.10</td>
<td>Fri 12.11.10</td>
</tr>
<tr>
<td>Žádost na ERÚ - udělení licence</td>
<td>13 days</td>
<td>Mon 15.11.10</td>
<td>Wed 1.12.10</td>
</tr>
<tr>
<td>Zapojení elektrárny a zkušební provoz</td>
<td>23 days</td>
<td>Thu 2.12.10</td>
<td>Mon 3.1.11</td>
</tr>
<tr>
<td>Uzavření smlouvy s distributorem</td>
<td>2 days</td>
<td>Tue 4.1.11</td>
<td>Wed 5.1.11</td>
</tr>
<tr>
<td>Předání díla a spuštění ostrého provozu</td>
<td>1 day</td>
<td>Thu 6.1.11</td>
<td>Thu 6.1.11</td>
</tr>
<tr>
<td>Dokončeno</td>
<td>0 days</td>
<td>Thu 6.1.11</td>
<td>Thu 6.1.11</td>
</tr>
</tbody>
</table>

Zdroj: vlastní Microsoft Project Manager
V Ganttově diagramu vidíme červeně označenou kritickou cestu, která trvá od samotného začátku projektu až do konce. Pro investora to znamená poměrně velké riziko, protože při prodloužení kritické činnosti se automaticky prodlužuje datum uvedení FVE do provozu.

Modře označeny vidíme činnosti žádost na stavební úřad o udělení územního souhlasu a žádost o připojení FVE k distribuční síti. Vyřízení žádostí proběhlo výjimečně rychle, proto činnosti neohrožují průběh projektu. Jak už bylo v práci zmíněno, na vyřízení obou žádostí je ze zákona 30 dnů. Pokud by se opravdu doba vyřízení blížila ke 30tidenní lhůtě, staly by se tyto činnosti kritickými a prodloužily by délku trvání projektu.

FVE byla uvedena do provozu dne 2. 12. 2010, viz harmonogram. Dnem uvedení FVE do provozu se počítá den, kdy došlo k připojení k přenosové nebo distribuční soustavě.

15 Rozpočet projektu

V nákladovém rozpočtu, který je nezbytnou součástí každého projektu jsem čerpala ze skutečných rozpočtů, do kterých jsem měla příležitost nahlédnout. Slouží hlavně k tomu, abychom si byli schopni udělat představu o tom, jak jsou jednotlivé komponenty finančně nákladné a abychom znali celkovou cenu pro budoucí výpočty.36

<table>
<thead>
<tr>
<th>Položka</th>
<th>Cena v Kč bez DPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provize - vedoucí projektu</td>
<td>1 500 000</td>
</tr>
<tr>
<td>Solární moduly</td>
<td>37 653 000</td>
</tr>
<tr>
<td>Rekonstrukce střech</td>
<td>6 200 000</td>
</tr>
<tr>
<td>Pojištění solárních panelů</td>
<td>84 000</td>
</tr>
<tr>
<td>Měniče a přísluš.</td>
<td>9 535 000</td>
</tr>
<tr>
<td>Transformátor</td>
<td>692 000</td>
</tr>
<tr>
<td>Nosná konstrukce</td>
<td>6 780 000</td>
</tr>
<tr>
<td>Elektromateriál</td>
<td>2 419 000</td>
</tr>
<tr>
<td>Solární kably a konektory</td>
<td>678 000</td>
</tr>
<tr>
<td>Montážní práce</td>
<td>3 853 000</td>
</tr>
<tr>
<td>Doprava</td>
<td>75 000</td>
</tr>
<tr>
<td>Manipulační technika</td>
<td>35 000</td>
</tr>
<tr>
<td>Projektová dokumentace</td>
<td>156 000</td>
</tr>
<tr>
<td>Revize</td>
<td>60 000</td>
</tr>
<tr>
<td>Administrace projektu</td>
<td>280 000</td>
</tr>
<tr>
<td>Celkem cena bez DPH</td>
<td>70 000 000</td>
</tr>
</tbody>
</table>

Zdroj: vlastní dle interních zdrojů

36V rozpočtu nejsou uvedeny ceny konkrétních společností, údaje jsou kvůli zneužití informací zkreslené, ale odpovídají realitě. Čerpáno je z interních zdrojů společnosti.
16 Forma výkupu vyrobené elektřiny

Při osobní schůzce se zaměstnancem společnosti ČEZ, na které jsem se zajímala o formách výkupu elektřiny z FVE, jsem se dozvěděla, že investor má dvě možnosti, jak vyrobenou elektřinu distribučním sítim prodávat.

Jedním ze způsobů jsou státem garantované výkupní ceny, které byly pro elektrárny uvedené do provozu v roce 2010 nastavené na 12,15 Kč/kWh a druhým způsobem je prodej formou zelených bonusů, které byly nastaveny na 11,18 Kč/kWh, viz přehled cen.37

![Tabulka 5: Přehled cen od r. 2010 – 2012](#)

<table>
<thead>
<tr>
<th>Rok</th>
<th>Cena v Kč/MWh</th>
<th>zelený bonus</th>
<th>výkupní cena</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>12 150</td>
<td>11 180</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>12 400</td>
<td>11 400</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>12 650</td>
<td>11 570</td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: ERÚ: Cenová rozhodnutí

16.1 Srovnání

V roce 2010 si investor zvolil tarif zelený bonus a od té doby tarif nebyl změněn. Zelený bonus je pro investora výhodnější v tu chvíli, kdy spotřebuje většinu vyrobené energie. Podle poskytnutých podkladů jsem zjistila, že investor v Josefově Dole spotřeboval ročně přibližně 70 % elektrické energie.38,39

Pro srovnání uvádím výpočet využití obou možností, abychom mohli zvážit, zda investor využívá správný tarif.

38Hodnoty měsíční výroby elektřiny byly získány z interních podkladů a jsou mírně zkreslené.
39Spotřeba byla určena na 70 % vyrobené energie a je počítána vždy z měsíční výroby. Nebere v úvahu rozdíly spotřeby energie v jednotlivých měsících.
16.1.1 Zelený bonus

Výpočet zeleného bonusu provedu tím způsobem, že nejprve vyjádřím celkovou částku zeleného bonusu vynásobením celkové spotřeby a sazbou zeleného bonusu za 1 MWh, poté k této částce připočítám celkové prodané množství energie při sazbě 400Kč/MWh. Nakonec přičtu celkovou úsporu, tzn. celkovou vlastní spotřebovanou energii vynásobenou sazbou při tarifu STANDARD - ČEZ.

Zelený bonus

Cena za přebytek vyrobené energie 400 Kč

Cena: Tarif STANDARD ČEZ (úspora) 2 709 Kč

<table>
<thead>
<tr>
<th>Výroba MWh</th>
<th>Přebytek energie</th>
<th>Úspora</th>
<th>Zelený bonus Kč</th>
<th>Přebytek energie Kč</th>
<th>Úspora Kč</th>
<th>Výnos celkem Kč (zaokrouhleno)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,636</td>
<td>4,9908</td>
<td>11,6452</td>
<td>192 478,52</td>
<td>1 996,32</td>
<td>31 546,85</td>
<td>226 022</td>
</tr>
<tr>
<td>53,326</td>
<td>15,9978</td>
<td>37,3282</td>
<td>616 981,82</td>
<td>6 399,12</td>
<td>101 122,09</td>
<td>724 503</td>
</tr>
<tr>
<td>100,399</td>
<td>30,1197</td>
<td>70,2793</td>
<td>1 161 616,43</td>
<td>12 047,88</td>
<td>190 386,62</td>
<td>1 364 051</td>
</tr>
<tr>
<td>111,79</td>
<td>33,537</td>
<td>78,253</td>
<td>1 293 410,30</td>
<td>13 414,80</td>
<td>211 987,38</td>
<td>1 518 812</td>
</tr>
<tr>
<td>145,437</td>
<td>43,6311</td>
<td>101,8059</td>
<td>1 682 706,09</td>
<td>17 452,44</td>
<td>275 792,18</td>
<td>1 975 951</td>
</tr>
<tr>
<td>136,287</td>
<td>40,8861</td>
<td>95,4009</td>
<td>1 576 840,59</td>
<td>16 354,44</td>
<td>258 441,04</td>
<td>1 851 636</td>
</tr>
<tr>
<td>116,976</td>
<td>35,0928</td>
<td>81,8832</td>
<td>1 353 412,32</td>
<td>14 037,12</td>
<td>221 821,59</td>
<td>1 589 271</td>
</tr>
<tr>
<td>117,088</td>
<td>35,1264</td>
<td>81,9616</td>
<td>1 354 708,16</td>
<td>14 050,56</td>
<td>222 033,97</td>
<td>1 590 793</td>
</tr>
<tr>
<td>121,321</td>
<td>36,3963</td>
<td>84,9247</td>
<td>1 403 683,97</td>
<td>14 558,52</td>
<td>230 061,01</td>
<td>1 648 304</td>
</tr>
<tr>
<td>114,581</td>
<td>34,3743</td>
<td>80,2067</td>
<td>1 325 702,17</td>
<td>13 749,72</td>
<td>217 279,95</td>
<td>1 556 732</td>
</tr>
<tr>
<td>36,832</td>
<td>11,0496</td>
<td>25,7824</td>
<td>426 146,24</td>
<td>4 419,84</td>
<td>69 844,52</td>
<td>500 411</td>
</tr>
<tr>
<td>67,432</td>
<td>20,2296</td>
<td>47,2024</td>
<td>780 188,24</td>
<td>8 091,84</td>
<td>127 871,30</td>
<td>916 151</td>
</tr>
<tr>
<td>113,811</td>
<td>341,4315</td>
<td>796,6735</td>
<td>13 167 874,85</td>
<td>136 572,60</td>
<td>2 158 188,51</td>
<td>15 462 636</td>
</tr>
</tbody>
</table>

Zdroj: vlastní
16.1.2 Výkupní cena

Výkupní cenu spočítám tak, že celkové vyrobené množství vynásobím sazbou výkupní ceny.

Výkupní cena *12 650 Kč*

| Tabulka 7: Výpočet – Výkupní cena |
|-----------------|-----------------|-----------------|
| **Výroba MWh** | **Výkupní cena** | **Výkupní cena (zaokrouhleno)** |
| 16,636 | 210 445,40 | 210 445,00 |
| 53,326 | 674 573,90 | 674 574,00 |
| 100,399 | 1 270 047,35 | 1 270 047,00 |
| 111,79 | 1 414 143,50 | 1 414 144,00 |
| 145,437 | 1 839 778,05 | 1 839 778,00 |
| 136,287 | 1 724 030,55 | 1 724 031,00 |
| 116,976 | 1 479 746,40 | 1 479 746,00 |
| 117,088 | 1 481 163,20 | 1 481 163,00 |
| 121,321 | 1 534 710,65 | 1 534 711,00 |
| 114,581 | 1 449 449,65 | 1 449 450,00 |
| 36,832 | 465 924,80 | 465 925,00 |
| 67,432 | 853 014,80 | 853 015,00 |
| **1138,11** | **14 397 028,25** | **14 397 028,00** |

Zdroj: vlastní

Pokud srovnáme celkové získané výnosy za rok při obou sazbách, zjistíme, že při zvoleném tarifu zeleného bonusu vydělá investor o 1 065 608 Kč více, než kdyby využíval prodeje elektřiny při výkupních cenách. Pro přehlednost můžeme toto srovnání vyjádřit také graficky.
17 Financování

Investor měl k dispozici dostatek finančních prostředků a rozhodl se celý projekt financovat sám. Podstatným důvodem bylo, že potřeboval FVE uvést do provozu ještě v roce 2010. Když se rozhodl projekt realizovat, již nezbýval dostatečný časový fond pro vyřízení úvěru s bankou.

Ze svých zkušeností vím, že z určitého hlediska je financování cizími zdroji levnější, než financování zdroji vlastními, a proto jsem se rozhodla oslovit vybrané bankovní instituty a požádat je o poskytnutí informací k úvěrovým podmínkám pro výstavbu FVE. Pro srovnání jsem si vybrala KB, ČSOB a Českou spořitelnu a po konzultaci s bankovními poradcí v jednotlivých pobočkách jsem se dozvěděla, jaké jsou podmínky k žádostí o úvěr zaměřený na výrobu energie z obnovitelných zdrojů – FVE, které Vám nyní stručně popiši. Dále se budu věnovat jednotlivým nabídkám.
17.1 Podmínky úvěrování v oblasti fotovoltaiky

Níže uvedené podmínky jsou platné pro projekty realizované podnikateli s cílem nahradit část spotřeby elektrické energie ve vlastním areálu.

K žádosti o úvěr bankovní poradce požaduje následující podklady, které jsou nutné k posouzení realности udělení úvěru. Tato základní kritéria musí splnit každý projekt v oblasti fotovoltaiky ještě před zahájením podrobných jednání s bankou.40

- smlouvu o připojení k distribuční síti uzavřenou do konce roku 2010 (popř. smlouvu budoucí)
- doložit dostatečnou výši vlastních zdrojů, 20 - 40% z celkových nákladů projektu bez DPH (liší se u různých bank)
- základní informace o projektu
- celkové předpokládané náklady na projekt
- harmonogram výstavby projektu
- představa o financování projektu
- požadovaná výše a doba splatnosti úvěru

V další fázi bude banka po žadateli vyžadovat podrobnější informace a interní podklady společnosti, aby mohl být zahájen schvalovací proces.

- informace o vlastnících a akcionářské struktuře a původu vlastních zdrojů
- osvědčení o kvalifikaci provozovat energetický zdroj daného výkonu
- smlouvu s provozovatelem distribuční sítě
- smlouvu s dodavatelem technologií a smlouvu se zhotovitelem projektu
- výpis z katastru nemovitostí (popř. nájemní smlouvu)
- návrhy pojistných smluv

Na základě výčtu podmínek pro financování projektu jsem zjistila, že výše uvedené podmínky investor splňuje a má nárok na poskytnutí úvěru bankou.

40 Osobní konzultace s bankovním poradcem
17.2 Konkrétní nabídky oslovených bank

Kromě navýšení úvěru o úroky si banka účtuje další poplatky za zpracování a vyhodnocení žádosti o úvěr, za realizaci úvěru a za spravování úvěru.

17.2.1 KB

Banka financuje úvěr maximálně do výše 80 % nákladů projektu a současně může poskytnout úvěr do výše 100 Kč/Wp instalovaného výkonu. Pokud budu brát v úvahu, že by banka byla ochotna financovat celou maximální částku, tedy 80 %, jednalo by se v našem případě o 56 mil. Kč. Výkon FVE je 940 Wp a druhá podmínka je tedy splněna.

<table>
<thead>
<tr>
<th>Výše úvěru:</th>
<th>56 000 000 Kč</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doba úvěru:</td>
<td>15 let</td>
</tr>
<tr>
<td>Úroková sazba:</td>
<td>4,5%</td>
</tr>
<tr>
<td>Zpracování a vyhodnocení žádosti o úvěr:</td>
<td>30 000 Kč</td>
</tr>
<tr>
<td>Za realizaci a příslušný úvěr:</td>
<td>336 000 Kč</td>
</tr>
<tr>
<td>Spravování úvěru (měsíčně):</td>
<td>600 Kč</td>
</tr>
<tr>
<td>Měsíční splátka:</td>
<td>428 396 Kč</td>
</tr>
<tr>
<td>Navýšení</td>
<td>21 111 280 Kč</td>
</tr>
</tbody>
</table>

Zdroj: vlastní, viz příloha 4

17.2.2 Česká spořitelna

Banka financuje úvěr maximálně do výše 75 % nákladů projektu a současně může poskytnout úvěr do výše 90 Kč/Wp instalovaného výkonu. Pokud budu brát v úvahu, že by banka byla ochotna financovat celou maximální částku, tedy 75 %, jednalo by se v našem případě o 52,5 mil. Kč. Výkon FVE je 940 kWp a druhá podmínka je tedy také splněna.

41Úroková sazba je stanovena individuálně, dle hodnocení každého klienta. Úrokové sazby použité v příkladech jsou tedy pouze orientační.
42Jedná se o ceny dle sazebníku, které mohou být individuálně upraveny.
43Jedná se o 0,3% z výše úvěru, minimálně 5 000 Kč, maximálně 30 000 Kč.
44Jedná se o 0,6% z výše úvěru, minimálně 5 000 Kč.
Výše úvěru 52 500 000 Kč
Doba úvěru 15 let
Úroková sazba 4,3%
Zpracování a vyhodnocení žádosti o úvěr 32 000 Kč\(^{46}\)
Za realizaci a příslušnou úvěru 262 500 Kč\(^{47}\)
Spravování úvěru (měsíčně) 500 Kč
Měsíční splátku 396 276 Kč
Navýšení 18 829 680 Kč\(^{48}\)

Zdroj: vlastní, viz příloha 5

17.2.3 ČSOB

Při návštěvě pobočky jsem se dozvěděla, že úvěry v podnikatelské oblasti k výstavbě FVE nebyly poskytovány.

17.3 Srovnání poskytnutých nabídek se samofinancováním

Po vypočtení konkrétních úvěrových nabídek je nutné tyto nabídky ještě porovnat, a to jak mezi bankami, tak se samofinancováním, které zvolil investor. Z přehledu bychom měli vidět, která z uvedených variant je nejvýhodnější.\(^{49}\)

<table>
<thead>
<tr>
<th>Druh financování</th>
<th>Vlastní zdroje</th>
<th>Cizí zdroje</th>
<th>Navýšení o úrok v Kč</th>
<th>Navýšení o poplatky v Kč</th>
<th>Celkové náklady financování v Kč</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Kč</td>
<td>%</td>
<td>Kč</td>
<td>x</td>
</tr>
<tr>
<td>Samofinancování</td>
<td>100</td>
<td>70 000 000</td>
<td>0</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>KB</td>
<td>20</td>
<td>14 000 000</td>
<td>80</td>
<td>56 000 000</td>
<td>21 111 280</td>
</tr>
<tr>
<td>ČS</td>
<td>25</td>
<td>17 500 000</td>
<td>75</td>
<td>52 500 000</td>
<td>18 829 680</td>
</tr>
</tbody>
</table>

Zdroj: vlastní

\(^{46}\)Jedná se o 0,4% z výše úvěru, minimálně 5 000 Kč, maximálně 32 000 Kč.
\(^{47}\)Jedná se o 0,5% z výše úvěru, minimálně 5 000 Kč.
\(^{49}\)Ke srovnání zdrojů slouží pouze zjednodušený výpočet, ve kterém není zohledněn vliv inflace.
Pokud srovnávám pouze úvěry mezi KB a Českou spořitelnou, je z tabulky zřejmé, že úvěr u České spořitelny je pro investora výhodnější a méně finančně nákladný. Jedinou nevýhodou může být větší podíl financování vlastními zdroji, a to o 5 %. Samofinancování projektu je stále bráno jako nejvýhodnější formou financování vzhledem k vysokým úrokovým sazbám bank. Převýšení úvěrů o úroky a poplatky činí u České spořitelny 19 214 180 Kč a u KB 21 585 280 Kč.

V dnešní době je spousta možností, kam investovat peněžní prostředky a pokud vycházím z toho, že mám k dispozici 70 mil. Kč, budu zvažovat také jiné způsoby financování, kterými mohlo být např. investice na finančních trzích, investice do komodit nebo jiných nemovitostí, které mívají zpravidla největší výnosnost. Mohu tedy uvažovat o tom, zda se investor rozhodl správně a zda by nedokázal tuto výši finančních prostředků lépe zhodnotit, pokud by FVE financoval cizími zdroji (úvěrem) a peníze investoval jiným způsobem.

Detailní rozebrání této možnosti už ale není předmětem této práce a budu tedy rozhodnutí investora považovat za správné.

18 Finanční analýza

V této kapitole použijí základní finanční ukazatele pro analýzu a zhodnocení investic. Mezi nejdůležitější z těchto ukazatelů patří návratnost investice (ROI) a doba návratnosti investice.

18.1 Návratnosti investice ROI

Vyjadřuje čistý zisk nebo čistou ztrátu, která se počítá oproti počátečnímu vkladu a vyjadřuje se v %. 50

\[
ROI = (\frac{\text{čistý zisk} - \text{počáteční investice}}{\text{počáteční investice}})
\]

18.2 Doba návratnosti investice

Návratnost investice je doba, za kterou se počáteční investiční náklady vyrovnaní příjímů z investice a je vyjádřena v letech.51

\[DN = \text{Investiční náklad/průměrný roční zisk} \]

18.3 Návratnost investice při zohlednění solární daň

Když jsem se začala zabývat teorií návratnosti FVE, zjistila jsem, že jejich návratnost je přibližně 5 – 7 let. Rozhodla jsem se vypočítat návratnost investice v rozmezí 10 let, viz tabulka 9 a zjistit, za jak dlouho se vrátí investorovi investiční náklady z přesností na dny. V této variantě zohledňuji solární daň, která je platná od r. 2011.52

Nejprve definuji jednotlivé sloupce, které se nachází v tabulce s výpočtem.

Provozní náklady

Částka průměrných provozních nákladů se skládá ze tří položek, kterými jsou servis FVE, pojištění FVE a náklady na ostrahu. Vycházela jsem z průměrných ročních nákladů.

Výnosy

Průměrné výnosy jsou stanoveny z tabulky 6, jako průměrné roční výnosy po odečtu solární daně 28%.

Zisk

Výnosy – náklady

Kumulace zisku

Zůstatek z prvotních nákladů

Postupné odčítání kumulace zisku od počáteční investice.

52Návratnost investice budu počítat od doby spuštění ostrého provozu, tedy od 6. 1. 2011.
Výše investice

70 000 000

ROI

45%

ROI v Kč

31 687 202

Průměrný denní zisk

27 860

Počet dní potřebných k návratu investice

2513

Datum spuštění ostrého provozu

6.1. 2011

Návratnost investice

22. 11. 2017

Doba návratnosti v letech

6,88

Tabulka 9: Návratnost investice při zohlednění solární daně 28 %

<table>
<thead>
<tr>
<th>Rok</th>
<th>Provozní náklady v Kč</th>
<th>Výnosy v Kč</th>
<th>Zisk v Kč</th>
<th>Kumulace zisku v Kč</th>
<th>Zůstatek z prvotních nákladů</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1 273 630</td>
<td>11 442 350</td>
<td>10 168 720</td>
<td>10 168 720</td>
<td>59 831 280</td>
</tr>
<tr>
<td>2012</td>
<td>1 273 630</td>
<td>11 442 350</td>
<td>10 168 720</td>
<td>20 337 440</td>
<td>49 662 560</td>
</tr>
<tr>
<td>2013</td>
<td>1 273 630</td>
<td>11 442 350</td>
<td>10 168 720</td>
<td>30 506 161</td>
<td>39 493 839</td>
</tr>
<tr>
<td>2014</td>
<td>1 273 630</td>
<td>11 442 350</td>
<td>10 168 720</td>
<td>40 674 881</td>
<td>29 325 119</td>
</tr>
<tr>
<td>2015</td>
<td>1 273 630</td>
<td>11 442 350</td>
<td>10 168 720</td>
<td>50 843 601</td>
<td>19 156 399</td>
</tr>
<tr>
<td>2016</td>
<td>1 273 630</td>
<td>11 442 350</td>
<td>10 168 720</td>
<td>61 012 321</td>
<td>8 987 679</td>
</tr>
<tr>
<td>2017</td>
<td>1 273 630</td>
<td>11 442 350</td>
<td>10 168 720</td>
<td>71 181 041</td>
<td>-1 181 041</td>
</tr>
<tr>
<td>2018</td>
<td>1 273 630</td>
<td>11 442 350</td>
<td>10 168 720</td>
<td>81 349 762</td>
<td>-11 349 762</td>
</tr>
<tr>
<td>2019</td>
<td>1 273 630</td>
<td>11 442 350</td>
<td>10 168 720</td>
<td>91 518 482</td>
<td>-21 518 482</td>
</tr>
<tr>
<td>2020</td>
<td>1 273 630</td>
<td>11 442 350</td>
<td>10 168 720</td>
<td>101 687 202</td>
<td>-31 687 202</td>
</tr>
<tr>
<td>Celkem</td>
<td>12 736 300</td>
<td>114 423 502</td>
<td>101 687 202</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: vlastní, vytvořeno v Microsoft Office Excel
Komentář k výpočtům

ROI jsem vypočítala jako průměrný čistý zisk za 10 let, ponižený o počáteční investici/počáteční investice

ROI v Kč je vypočítána jako průměrný čistý zisk za 10 let ponižený o počáteční investici

Průměrný denní zisk je vypočítán jako průměrný roční zisk/365

Počet dní potřebných k návratu investice vypočítám jako počáteční investici/průměrný denní zisk

Přesné datum návratnosti investice vypočítám jako datum spuštění ostrého provozu + počet dní potřebných k návratu investice

Dobu návratnosti v letech vypočítám jako počet dní potřebných k návratu investice/365

18.4 Návratnost investice bez zohlednění solární daně

Druhá varianta mého výpočtu vychází z úvahy, jaká návratnost investice by byla v případě, že by nebyla zavedena solární daň. Definice sloupčů tabulky a komentář k výpočtům jsou stejné, jako v předchozí variantě, pouze výnosy jsou vyjadřeny ještě před zdaněním solární daní viz tabulka 10.
Tabulka 10: Návratnost investice bez zohlednění solární daně 28 %

<table>
<thead>
<tr>
<th>Rok</th>
<th>Provozní náklady</th>
<th>Výnosy</th>
<th>Zisk</th>
<th>Kumulace zisku</th>
<th>Zůstatek z prvních nákladů</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1 273 630</td>
<td>15 462 635</td>
<td>14 189 005</td>
<td>14 189 005</td>
<td>55 810 995</td>
</tr>
<tr>
<td>2012</td>
<td>1 273 630</td>
<td>15 462 635</td>
<td>14 189 005</td>
<td>28 378 011</td>
<td>41 621 989</td>
</tr>
<tr>
<td>2013</td>
<td>1 273 630</td>
<td>15 462 635</td>
<td>14 189 005</td>
<td>42 567 016</td>
<td>27 432 984</td>
</tr>
<tr>
<td>2014</td>
<td>1 273 630</td>
<td>15 462 635</td>
<td>14 189 005</td>
<td>56 756 022</td>
<td>13 243 978</td>
</tr>
<tr>
<td>2015</td>
<td>1 273 630</td>
<td>15 462 635</td>
<td>14 189 005</td>
<td>70 945 027</td>
<td>-945 027</td>
</tr>
<tr>
<td>2016</td>
<td>1 273 630</td>
<td>15 462 635</td>
<td>14 189 005</td>
<td>85 134 033</td>
<td>-15 134 033</td>
</tr>
<tr>
<td>2017</td>
<td>1 273 630</td>
<td>15 462 635</td>
<td>14 189 005</td>
<td>99 323 038</td>
<td>-29 323 038</td>
</tr>
<tr>
<td>2018</td>
<td>1 273 630</td>
<td>15 462 635</td>
<td>14 189 005</td>
<td>113 512 043</td>
<td>-43 512 043</td>
</tr>
<tr>
<td>2019</td>
<td>1 273 630</td>
<td>15 462 635</td>
<td>14 189 005</td>
<td>127 701 049</td>
<td>-57 701 049</td>
</tr>
<tr>
<td>2020</td>
<td>1 273 630</td>
<td>15 462 635</td>
<td>14 189 005</td>
<td>141 890 054</td>
<td>-71 890 054</td>
</tr>
<tr>
<td>Celkem</td>
<td>12 736 300</td>
<td>154 626 354</td>
<td>141 890 054</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: vlastní, vytvořeno v Microsoft Office Excel

Výše investice 70 000 000
ROI 103%
ROI v Kč 71 890 054
Průměrný denní zisk 38 874
Počet dní potřebných k návratu investice 1801
Datum uvedení do provozu 6. 1. 2011
Návratnost investice 11. 12. 2015
Doba návratnosti v letech 4,93
18.5 Porovnání návratnosti investice

Porovnáním výpočtů jsem zjistila, že pokud by nebylo zavedeno opatření ve formě solární daně, doba návratnosti by se snížila téměř o 2 roky (přesněji 1,95 roku) a zisk investora by se navýšil o zaplacenou srážkovou daň, tedy o 40 202 852 Kč.

19 Rizika

Rizika v projektu výstavby FVE můžeme rozdělit do dvou skupin, na rizika implementační, která se budou vyskytovat při samotné realizaci FVE a na rizika provozní, která budou spojena s následným běžným provozem FVE. 53

Tabulka 11: Implementační rizika

<table>
<thead>
<tr>
<th>Druh rizika</th>
<th>Pravděpodobnost</th>
<th>Opatření</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nepovolení stavby</td>
<td>nízká</td>
<td>včasné podání žádosti</td>
</tr>
<tr>
<td>Špatné zvolení tarifu</td>
<td>střední</td>
<td>předběžná finanční analýza</td>
</tr>
<tr>
<td>Špatné zhotovení projektové dokumentace</td>
<td>střední</td>
<td>správný výběr projektanta</td>
</tr>
<tr>
<td>Špatný výběr zhotovitele</td>
<td>nízká</td>
<td>reference, výběrové řízení</td>
</tr>
<tr>
<td>Chybný výběr použitých technologií</td>
<td>střední</td>
<td>správný výběr použitých technologií</td>
</tr>
<tr>
<td>Nedodržení časového plánu</td>
<td>velmi vysoká</td>
<td>kontrola a důraz na včasné provedení kritických činností</td>
</tr>
</tbody>
</table>

Zdroj: vlastní

Tabulka 12: Provozní rizika

<table>
<thead>
<tr>
<th>Druh rizika</th>
<th>Pravděpodobnost</th>
<th>Opatření</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zvýšení sazby solární daně</td>
<td>střední</td>
<td>odvolání se na Ústavní soud</td>
</tr>
<tr>
<td>Prodloužení doby trvání solární daně</td>
<td>střední</td>
<td>neovlivnitelné (určuje stát)</td>
</tr>
<tr>
<td>Snížení sazby výkupních cen a zelených bonusů</td>
<td>střední</td>
<td>neovlivnitelné (určuje ERÚ)</td>
</tr>
<tr>
<td>Vypovězení smlouvy odběratelem přebytku vyrobené elektřiny</td>
<td>nízká</td>
<td>uzavření smlouvy na dobu určitou</td>
</tr>
<tr>
<td>Špatné klimatické podmínky</td>
<td>velmi nízká</td>
<td>nelze ovlivnit (předpoklad vychází z klimatických podmínek z minulých let)</td>
</tr>
</tbody>
</table>

Zdroj: vlastní
20 Závěr

V bakalářské práci jsem se věnovala problematice výroby elektřiny z obnovitelných zdrojů a s tím souvisejícím projektem výstavby FVE. Cílem práce bylo nastínit průběh projektové výstavby FVE a shrnout možnosti, které měl investor při realizaci. Rozhodla jsem se charakterizovat a porovnat možnosti využití investorem s možnostmi, které se mu nabízely v době výstavby.

Po podrobném zanalyzování a zrekonstruování projektu mohu jednoznačně říci, že je investice úspěšná. Velký podíl na úspěšnosti investice znamená hlavně fakt, že se realizované práce stihly dokončit v termínu, do kterého musela být soustava připojena, aby pro investora plynuly výhody ve formě zelených bonusů a výkupních cen podporovaných státem. Jejich vysoké sazby, byly platné pouze pro fotovoltaické soustavy připojené do konce roku 2010.

Kladně hodnotím výběr vedoucího projektu a výběr zhotovitele, kteří se podíleli na včasném dokončení projektu, i když mohlo nastat riziko přesažení termínu u některé z kritických činností.

Dnes již zákony neumožňují připojení velkých FVE do distribučních sítí a na trhu jsou realizovány pouze FVE s výkonem do 30 kWh, které se stále považují za výhodné investice a velkou perspektivou je v dnešní době stále instalace fotovoltaických panelů na střechách rodinných domů.
Seznam použité literatury

Interní studie společnosti

Zákon o podpoře výroby elektriny z obnovitelných zdrojů energie a o změně některých zákonů. In: Sbírka zákonů č. 330/2010
Cezdistribuce.cz [online]. [cit.2012-30-04]

Finance.cz [online]. [cit. 2012-20-04]. Dostupné z:
http://www.finance.cz/zpravy/finance/165575-vlastni-nebo-cizi-zdroje-

Isofenenergy.cz [online]. [cit. 2012-3-05]. Dostupné z:

Microsoft.com [online].[cit.2012-23-04).
Dostupné z: http://www.microsoft.com/cze/office2010/produkty/project.aspx

Seznam obrázků

Obrázek 1: Projektový trojúhelník
Obrázek 2: Rozložení investičních nákladů při pořízení FVE
Obrázek 3: Produkce elektřiny z obnovitelných zdrojů v letech
Obrázek 4: Roční průměrný úhrn slunečního záření [kWh/m²]
Obrázek 5: Fotovoltaická elektrárna Josefův Důl

Seznam tabulek

Tabulka 1: Přehled budov
Tabulka 2: SWOT analýza
Tabulka 3: Harmonogram činností
Tabulka 4: Položkový rozpočet
Tabulka 5: Přehled cen od r. 2010 – 2012
Tabulka 6: Výpočet - Zelený bonus
Tabulka 7: Výpočet – Výkupní cena
Tabulka 8: Srovnání vlastních a cizích finančních zdrojů
Tabulka 9: Návratnost investice při zohlednění solární daně 28 %
Tabulka 10: Návratnost investice bez zohlednění solární daně 28 %
Tabulka 11: Implementační rizika
Tabulka 12: Provozní rizika

Seznam grafů

Graf 1: Ganttův diagram
Graf 2: Srovnání tarifů
Graf 3: Návratnost při zohlednění solární daně
Graf 4: Návratnost bez zohlednění solární daně
Seznam příloh

Příloha 1: Výše výkupních cen a zelených bonusů
(Zdroj: www.tzb-info.cz)

Příloha 2: Žádost o připojení k distribuční společnosti ČEZ
(Zdroj: www.cezdistribuce.cz)

Příloha 3: Žádost o udělení licence ERÚ
(Zdroj: www.eru.cz)

Příloha 4: Splátkový kalendář KB
(Zdroj: vlastní a www.finance.cz)

Příloha 5: Splátkový kalendář Česká Spořitelna
(Zdroj: vlastní a www.finance.cz)