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Abstrakt 

Tato bakalářská práce se zabývá vývojem numerického řešiče pro úlohy lineární pružnosti 

v příhradových a nosníkových konstrukcí. Cílem této práce je sestavení lokálních matic tuhosti, 

které budou následně transformovány do globální matice tuhosti. Zadávání okrajových 

podmínek a následné sledování výsledků a deformace prutové soustavy bude řešeno pomocí 

programu MATLAB. 

Klíčová slova 

Lokální matice tuhosti; Globální matice tuhosti; Prut; Styčník; Vnitřní silové účinky; Příhradové 

konstrukce 

 

Abstract 

This bachelor thesis deals with the development of a numerical solver for linear elasticity 

problems in truss and beam structures. The aim of this work is to assemble local stiffness 

matrices which will then be transformed into the global stiffness matrix. The application of 

boundary conditions and the subsequent monitoring of results and deformations on the rod 

system will be handled using MATLAB software. 
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Úvod 

Tato bakalářská práce se bude zabývat vývojem numerického řešiče pro úlohy lineární 

pružnosti příhradových a nosníkových konstrukcí. Pro tuto práci byla zvolena jednoduchá 

prutová soustava sloužená z jedenácti prutů a sedmi styčníků. Tato konstrukce bude 

vykreslená a nadále řešena pomocí programu MATLAB. Nejprve budou sestaveny lokální 

matice tuhosti jednotlivých prutů. Tyto matice budou poté transformovány do globální matice 

hmotnosti. Dále se tato práce bude zabývat efektivnímu zadávání okrajových podmínek této 

konstrukce.  

V první kapitole bude představena historie prutových soustav. Bude zde i zmíněna Eiffelova 

věž, která se stala ikonickým příkladem využití prutové konstrukce. 

Druhá kapitola se bude zabývat geometrií a konstrukčním řešením prutových soustav. Budou 

zde postupně popsány technologie spojování prutů se styčníky. 

Ve třetí kapitole bude nastíněn postup sestavování lokálních matic tuhosti. Nejprve budou 

sestaveny lokální matice tuhosti jednotlivých prutů, které budou následně převedeny do jedné 

matice v globálním souřadnicovém systému. Samotné sestavování jednotlivých matic bude 

následně řešeno v programu Matlab. 

Čtvrtá kapitola se bude zabývat teorií řešení prutových soustav. Nejprve zde budou popsány 

jednotlivé kroky pro určení vnější a vnitřní statické určitosti. Poté budou popsány jednotlivé 

metody, které řeší vnitřní silové účinky prutů v soustavě. Tyto metody lze použít pouze 

v případě, že prutová soustava je staticky určitá. 

Pátá kapitola bude o implementaci numerického řešiče v programu Matlab. Budou zde 

popsány postupně všechny části programu a detailně okomentovány jednotlivé proměnné a 

použité algoritmy a vztahy. 

Šestá kapitola bude věnována výsledkům, které byly zjištěny postupným zadáváním okrajových 

podmínek konstrukce. Budou zde sledovány délky prutů, posuvy jednotlivých uzlů a chování 

prutové soustavě při zatížení. Pro výpočet vnitřních silových účinků bude použita styčníková 

metoda. 
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1 Příhradové konstrukce 

Příhradové konstrukce, známé také jako prutové soustavy, jsou typy pevných konstrukcí, které 

jsou složeny z prutů a styčníků. Pruty přenášejí síly a v samotné konstrukci nejčastěji tvoří 

geometrické obrazce ve tvaru trojúhelníků. Zato styčník tvoří společný uzel prutů. Příhradové 

konstrukce mají velmi široké zastoupení. Z hlediska jejich pevnosti, odolnosti, efektivnímu 

přenášení sil jsou díky těmto parametrům využívány ve formě mostů, stožárů, jeřábů, střešních 

konstrukcí a dalších inženýrských staveb. (Stavební komunita, 2012) 

 

 

 

 

 

 

 

 

 

Obrázek 1 Příhradová konstrukce  

Zdroj: Správa železnic, 2022 
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1.1 Eiffelova věž 

Eiffelova věž je dominantní stavbou v celé Francii. Nachází se v hlavním městě v Paříži. Stavba 

této krásné a historické věže se datuje v letech 1887 až 1889. Původní výška této ocelové věže 

se zastavila na čísle 300,65 metru, což z této stavby dělalo největší stavbu na celém světě. Díky 

různým úpravám a instalacím antén se původní výška zvětšila o zhruba 24 metrů. V současné 

době věž nyní měří 324 metrů. Eiffelova věž také patří k pravidelně navštěvovaným stavbám 

po celém světě. (Hrady.cz, 2017) 

Hlavním materiálem pro výrobu konstrukce Eiffelovy věže byla ocel. Stavba probíhala na dvou 

místech. Výroba konstrukce probíhala v místní továrně na okraji města a samotná montáž věže 

probíhala na místě, na kterém se nachází dominanta Paříže. Stavba se skládá ze tří plošin, které 

jsou umístěny v různých výškách. A to v 57, 115 a 276 metrech. Celá věž se nachází na 

čtvercovém půdorysu o délce stran 125 metrů. Stavba začala prvotním vybudováním základů. 

Zajímavá informace udává, že celkový tlak, který je vyvíjen věží na zemský povrch, je pouhých 

4,5 kg/cm2. Tato hodnota je srovnatelná s hodnotou, když sedí člověk na židli. Další zajímavou 

informací ohledně stavby věže je použití celkových 2 500 000 nýtů k montáži konstrukce. 

(Hrady.cz, 2017) 

Konstrukce Eiffelovy věže je velmi specifická. V této diskuzi se vede nespočet názorů, zdali se 

jedná o příhradovou konstrukci nebo se jedná o konstrukci mřížkovou. Pro příhradovou 

konstrukci je typické využívání mřížkového spoje nosníků často trojúhelníkového tvaru. Tento 

způsob vede k rozdělení konstrukce na menší části, což vede k vysoké stabilitě a k zachování 

poměrně nízké hmotnosti. V případě mřížkové konstrukce je konstrukce navržena specificky 

pro zajištění stability. Věž by při tomto navržení měla odolat síle větru a jiným přírodním 

katastrofám. 

  

Obrázek 2 Eiffelova věž 

Zdroj: Verde, 2015 
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2 Geometrie a konstrukční řešení prutové soustavy 

V této kapitole bude nejprve představena geometrie prutové soustavy. Stejně jako v první 

kapitole bude vysvětleno spojení „prutová soustava“. Dále složení a využití prutových soustav. 

Druhá část kapitoly bude věnována konstrukčnímu řešení prutových soustav. Představíme si, 

jakými technologiemi mohou být konstrukce prutových soustav spojeny. 

 

2.1 Geometrie prutových soustav 

V oblasti stavebnictví a strojírenského inženýrství mají velmi široké zastoupení. V těchto 

oblastech se s nimi často setkáváme ve formě mostů, halových konstrukcí, jeřábů, stožárů ale i 

střešních konstrukcí. Jedná se o příhradové konstrukce - prutové soustavy.  

Prutové soustavy se skládají z několika prutů a styčníků. Prut je základním konstrukčním 

prvkem v každé prutové soustavě. Hlavní výhodou prutů je jednoduchý průřez, který vede ke 

snadné výrobě a spojení. Nejčastěji se pruty vyrábějí s průřezem ve tvaru kruhu, obdélníku 

nebo čtverce. 

Styčník je stejně jako prut základním konstrukčním prvkem. V prutové soustavě spojuje 

jednotlivé pruty v jednom bodě. Podle typu spoje mohou být styčníky kloubové, které 

umožňují rotaci prutů. Dále pak styčníky pevné, které zajišťují větší tuhost a odolnost proti 

deformacím. Typickým příkladem použití pevných styčníků jsou rámové konstrukce. 

 

 

 

 

 

 

 

 

 

 

 

Obrázek 3 Prutová soustava  

Zdroj: Svoboda, 2012 
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2.2 Konstrukční řešení prutových soustav 

2.2.1 Nýtové spoje 

Nýtování je technologický proces, při kterém dochází ke spojování dvou a více strojních 

součástí. Nýtový spoj patří do kategorie nerozebíratelných spojů. Tyto spoje nelze při jejich 

rozpojení znovu plně obnovit, jelikož některá ze spojovaných součástí je poškozena nebo 

deformována. V současnosti jsou nýtové spoje částečně nahrazeny svarovými spoji nebo 

lepením, popř. šroubovými spoji. Proto se jejich využití přesunulo do odvětví stavebnictví 

k opravám historických konstrukcí a pro přenosné konstrukce. Dále jsou využívány v oděvním 

průmyslu, v elektrotechnice nebo v přesné mechanice. (Lávička, 2013) 

Základním prvkem každého nýtového spoje je nýt. Nýt je konstrukčně rozdělen na hlavu a dřík. 

Hlava nýtu slouží k pevnému uchycení na povrchu materiálu a dřík je část nýtu, která prochází 

spojovanými částmi. Druhy nýtů se rozdělují podle hlavy na nýty s půlkulatou hlavou, 

zápustnou hlavou, čočkovitou hlavou a nýt kotlový a lodní. Dle materiálu mohou být nýty 

ocelové, hliníkové, měděné a mosazné. Z hlediska konstrukce se jedná o nýty duté, výbušné a 

trhací. (Lávička, 2013) 

Nýtování lze rozdělit na dva základní druhy: přímé a nepřímé. Nepřímé nýtování je častěji 

používaný způsob nýtování. Spočívá ve spojení součástí mezi hlavy nýtů, kde jsou nýty vloženy 

do předem vyvrtaných otvorů. Roznýtováním konce dříku nýtů vznikne tzv. závěrná hlava, 

která zajišťuje pevnost spoje. Přímé nýtování spočívá ve vytváření spoje bez použití nýtů, kdy je 

pro spoj použita část materiálu jednoho ze spojovaných dílů. Provádí se za studena a je určen 

pro méně namáhané spoje. (Lávička, 2013) 

 

 

 

 

Obrázek 4 Nýtový spoj konstrukce 

Zdroj: Docplayer, 2025 
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2.2.2 Šroubové spoje 

Šroubový spoj je druh rozebíratelného spojení, který umožňuje spojení dvou nebo více částí. 

Jedná se o nejstarší a nejpoužívanější typ spojů. Mezi základní šroubové spoje patří: spojení 

průchozím maticovým šroubem s hlavou a maticí, šroub se zápustnou hlavou bez matice, 

závrtný šroub s maticí. 

Složení šroubového spoje: 

• Šroub – je spojovací prvek, který se skládá z hlavy a dříku. Dřík je válcová část šroubu, 

která prochází spojovaným materiálem a je opatřen závitem v celé nebo částečné 

délce. Hlava šroubu slouží k pevnému uchycení nástroje při šroubování. Může mýt 

různé tvary, např. šestihrannou, kulatou, zápustnou. 

 

• Matice – je spojovací prvek určený k uchycení šroubu a k vytvoření kompletního 

šroubového spojení. Matice je opatřena vnitřním závitem umožňující zašroubování 

šroubu a vytvoření pevného spoje. 

 

• Podložka – je tenký spojovací prvek, který se používá mezi hlavou šroubu a spojovacím 

materiálem nebo mezi maticí a spojovacím materiálem. Podložka se používá pro účely 

jako ochrana opotřebení při opakované montáži, pro snížení tření pod maticí, pro 

rovnoměrnější rozložení sil ve spoji. 

 

Šroubové spoje mají velmi široké zastoupení v různých oborech. Ve stavebnictví se používají 

pro montáž kovových konstrukcí. Dále jejich využití nalezneme ve strojírenství, 

v automobilovém průmyslu pro spojení motorů, podvozků a karoserií. 

 

Obrázek 5 Šroubový spoj konstrukce 

Zdroj: Konstrukce, 2012 
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2.2.3 Svarové spoje 

Svařování je způsob vytváření nerozebíratelného spojení dvou a více materiálů, obvykle kovů 

nebo plastů. Jedná se o nejrozšířenější typ nerozebíratelného spojení. Princip svařování 

prochází dvěma hlavními etapami. První etapou je dán ohřev spojovaných materiálů na jejich 

bod tavení. V některých případech je nutností použití i přídavného materiálu ve formě 

svařovacích drátů nebo elektrody. Ve druhé etapě svařování dochází k ochlazení roztavených 

materiálů, což vede k vytvoření pevného spojení. (Garstka, 2013) 

Mezi hlavní výhody svařování patří: 

• Trvalé a pevné spojení materiálu 

• Snadná oprava svarů 

• Možnost automatizace procesu 

• Dosažení libovolného tvaru svařence 

• Těsnost spoje 

Nevýhody svarových spojů: 

• Nerozebíratelnost spoje 

• Nutná úprava stykových ploch 

• Vyšší nároky na kvalifikaci svářečů 

• Svařování některých materiálů není možné 

Mezi obvyklé technologie svařování patří svařování elektrickým odporem, elektrickým 

obloukem, plamenem, světelným paprskem, plazmatem, proudem elektronů, termitem bez 

použití tlaku a svařování termitem tlakové. (Garstka, 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obrázek 6 Svarový spoj konstrukce 

Zdroj: Konstrukce, 2012 
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2.2.4 Lepené spoje 

Lepení je technologický proces, při kterém dochází ke spojení dvou a více materiálů pomocí 

lepidla (adhesiv). Vzniká nerozebíratelné spojení, mezi jehož hlavní výhody patří vodotěsnost 

spoje, nízká hmotnost spoje, estetický vzhled spoje a spojování různých materiálů s odlišnými 

vlastnostmi. Lepené spoje mají i své nevýhody. Mezi nevýhody patří nízká teplotní odolnost, 

příprava povrchu, pevnost v některých případech. (Gregor, 2021) 

Lepidlo je látka, jejíž základní strukturou je pryskyřice, umožňující vytvoření pevného a trvalého 

spojení. Lepidlo lze použít za předpokladu splnění následujících podmínek: provozní teploty, 

smykové pevnost spoje, materiálu spojovaných součástí a vytvrzovacích podmínek. Lepidlo 

musí být vytvořeno tak, aby byla zachována rovnováha adheze a koheze. Dále musí být lepený 

spoj vytvářen jednoduchou technologií. (Gregor, 2021) 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Základní materiál 

2. Adhezní zóna 

3. Přechodová adhezní zóna 

4. Kohezní zóna 

5. Přechodová kohezní zóna 

6. Adhezní zóna 

(Gregor, 2021) 

 

Lepené spoje mají široké uplatnění v automobilovém a leteckém průmyslu, ve strojírenství a 

stavebnictví, v elektrotechnice. Z důvodu vysoké pevnosti a tuhosti spojování kovových 

příhradových konstrukcí lepení doplňuje další technologie spojování materiálů např. nýtování. 

(Gregor, 2021) 

  

Obrázek 7 Struktura lepeného spoje 

Zdroj: Gregor, 2021 
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3 Tvorba lokálních matic a jejich začlenění do globální 

matice 

Tato kapitola je čerpána z literatury o Úvodu do analýzy a návrhu metodou konečných prvků. 

(Kim, Sankar, 2008) Konkrétně se jedná o kapitolu dva: Jednoosé tyčové a příhradové prvky 

přímou metodou. Zde si představíme jak správně sestavovat lokální matice tuhosti a jejich 

transformace do globální matice.  

3.1 Rovinné příhradové prvky 

Tato část kapitoly se věnuje postupu sestavení matice tuhosti a obecné řešení dvojrozměrných 

(rovinných) příhradových konstrukcí pomocí přímé metody tuhosti. Pro lepší znázornění 

postupů byla zvolena příhradová konstrukce složená zde dvou prvků. (Kim, Sankar, 2008) 

Tato příhradová konstrukce je znázorněná na obrázku 11. Na horní uzel jsme ve vodorovném 

směru zvolili sílu F = 50 N. 

 

 

 

 

 

 

 

 

Při zavedení lokálního souřadnicového systému může být matice tuhosti jednoosých prutů 

použita pro jednotlivé prvky příhradové konstrukce. U rovinného příhradového prvku celkově 

rozeznáváme dva souřadnicové systémy: 

1. Globální souřadnicový systém vztažený k celé konstrukci 

2. Lokální souřadnicový systém vztažený pro daný prvek, osa x musí ležet v délce tohoto 

prvku 

Dle obrázku 12. můžeme vztah mezi silou a přemístěním příhradového prvku definovat 

v lokálním souřadnicovém systému následovně: 

 {
𝑓₁ₓ̶
𝑓₂ₓ̶
} = 

𝐸𝐴

𝐿
 [
−1 1
−1 1

] {
𝑢̅ ₁
𝑢̅ ₂
} (1) 

 

 

  

Obrázek 8 Rovinná příhradová konstrukce 

Zdroj: Kim, Sankar, 2008 
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Kde E vyjadřuje Youngův modul pružnosti, A vyjadřuje průřezovou plochu a L vyjadřuje délku 

prutu. Vztah EA/L udává tuhost pružiny k.  

Síly a posunutí jsou vyjádřeny v lokálním souřadnicovém systému. Pro zobecnění rovnice 

musíme zvážit příčné posuvy v₁ a v₂ ve směru osy y. Příčné síly, které odpovídají v jednotlivých 

uzlech, označíme jako f₁ᵧ a f₂ᵧ. (Kim, Sankar, 2008) 

V případě příhradového prvku příčné síly neexistují a tím pádem mají nulovou hodnotu. Na 

základě tohoto vyjádření můžeme matici tuhosti rozšířit o tyto síly a o posuny ve směru y. (Kim, 

Sankar, 2008) 

 

{
 

 
𝑓₁ₓ̶
𝑓₁ᵧ̶

𝑓₂ₓ̶
𝑓₂ᵧ̶}
 

 
 = 
𝐸𝐴

𝐿
 [

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

]{

𝑢̅ ₁
𝑣̅ ₁
𝑢̅ ₂
𝑣̅ ₂

} (2) 

 

Rozšířené vlastnosti lokální matice tuhosti: 

1. Matice čtvercového tvaru 

2. Symetrická matice 

3. Diagonální prvky matice jsou větší nebo rovno nule 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obrázek 9 Souřadnicové systémy 

Zdroj: Kim, Sankar, 2008 

 

Obrázek 10 Lokální souřadnicový systém 

Zdroj: Kim, Sankar, 2008 
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Tato matice platí pouze pro konkrétní prvek, který je uveden v předchozím příkladu. Tuto 

matici tedy nelze použít pro jiné prvky, protože každý prvek má své originální souřadnice. 

Lokální souřadnice pro prvek dva jsou vyobrazeny na obrázku 13. 

Pro vyřešení tohoto problému je nutné vyvinout systém rovnic tak, aby propojil všechny prvky 

v mřížce. Toho docílíme transformací vztahů síla-posun do globálních souřadnic, což vyžaduje 

použití transformačního vektoru souřadnic. (Kim, Sankar, 2008) 

 

3.1.1 Transformace souřadnic 

Protože jsou síly a posuvy považovány za vektorové veličiny, můžeme k určení vztahu mezi 

posuny v lokálních a globálních souřadnicích v uzlu využít vektorovou transformaci. Lokální 

posuny pro uzel jedna můžeme vyjádřit ve tvaru: 

{
𝑢̅ ₁
𝑣̅ ₁
} =  [

𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ
−𝑠𝑖𝑛ɸ 𝑐𝑜𝑠ɸ

] {
𝑢̅₁
𝑣̅₁} 

Vztah pro uzel dva: 

{
𝑢̅ ₂
𝑣̅ ₂
} =  [

𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ
−𝑠𝑖𝑛ɸ 𝑐𝑜𝑠ɸ

] {
𝑢̅₂
𝑣̅₂} 

Při sloučení těchto vztahů dostaneme: 

{

𝑢̅ ₁
𝑣̅ ₁
𝑢̅ ₂
𝑣̅ ₂

} =  [

𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ 0 0
−𝑠𝑖𝑛ɸ 𝑐𝑜𝑠ɸ 0 0
0 0 𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ
0 0 −𝑠𝑖𝑛ɸ 𝑐𝑜𝑠ɸ

] {

𝑢̅₁
𝑣̅₁
𝑢̅₂
𝑣̅₂

} 

lokální                                                                  globální 

 

Pro zjednodušení můžeme vztah mezi lokálními a globálními posuny zapsat ve tvaru: 

 {𝑔̅ } = [𝑇]{𝑔̅} (3) 

Kde {𝑔̅ } a {𝑔̅} označují stupně volnosti v lokálních a globálních souřadnicích, [𝑇] označuje 

transformační matici. Síly {𝑓} v lokálních souřadnicích jsou navázány se silami {𝑓 } v globálních 

souřadnicích takto: 

{
 

 
𝑓₁ₓ̶
𝑓₁ᵧ̶

𝑓₂ₓ̶
𝑓₂ᵧ̶}
 

 
 =  [

𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ 0 0
−𝑠𝑖𝑛ɸ 𝑐𝑜𝑠ɸ 0 0
0 0 𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ
0 0 −𝑠𝑖𝑛ɸ 𝑐𝑜𝑠ɸ

]

{
 

 
𝑓₁ₓ
𝑓₁ᵧ

𝑓₂ₓ
𝑓₂ᵧ}
 

 
 

lokální                                                                  globální 

  

nebo ve zkrácené podobě ve vztahu: 

 {𝑓 } = [𝑇]{𝑓} (4) 
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3.1.2 Matice tuhosti v globálním systému 

Matici tuhosti prvku z lokálního systému můžeme transformovat do globálního systému 

pomocí rovnice uvedené v předchozí části. 

Na obrázku 14 je vidět libovolné umístění prutu v dvojrozměrném prostoru. 

Vztah mezi silou a posunem v lokálním systému můžeme vyjádřit ve tvaru: 

 

{
 

 
𝑓₁ₓ̶
𝑓₁ᵧ̶

𝑓₂ₓ̶

𝑓₂ᵧ̶}
 

 
 = 
𝐸𝐴

𝐿
 [

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

]{

𝑢̅ ₁
𝑣̅ ₁
𝑢̅ ₂
𝑣̅ ₂

} (5) 

 

Ve zkrácené podobě lze vyjádřit ve tvaru: 

 {𝑓} = [𝑘]{𝑔̅} (6) 

Po dosazení rovnic (3) a (4) do rovnice (5) dostaneme: 

[𝑇]{𝑓} = [𝑘][𝑇]{𝑔̅} 

 

 

 

 

 

 

 

 

 

 

Pokud obě strany rovnice vynásobíme maticí [𝑇] ̄¹, dostaneme: 

{𝑓} = [𝑇] ̄¹ [𝑘][𝑇] {𝑔̅} 

globální                   globální 

nebo 

 {𝑓} = [𝑘]{𝑔̅} (7) 

 

Po vyjádření [𝑘] dostaneme matici tuhosti v globálním systému ve tvaru: 

 [𝑘] = [𝑇] ̄¹ [𝑘][𝑇] (8) 

 

Obrázek 11 Dvourozměrný prutový prvek 

Zdroj: Kim, Sankar, 2008 

 



 Vysoká škola polytechnická Jihlava 

23 

Pokud dokážeme, že inverze transformační matice [𝑇] se shoduje s její transpozicí, po 

vyjádření [𝑘] dostaneme: 

 [𝑘] = [𝑇] ᵀ [𝑘][𝑇] (9) 

 

Po maticovém násobení v rovnici (9) dostaneme konkrétní výraz pro [𝑘] ve tvaru: 

 [𝑘] = 
𝐸𝐴

𝐿
 

[
 
 
 
 

𝑐𝑜𝑠²ɸ 𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ −𝑐𝑜𝑠²ɸ −𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ

𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ 𝑠𝑖𝑛²ɸ −𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ −𝑠𝑖𝑛²ɸ

−𝑐𝑜𝑠²ɸ −𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ 𝑐𝑜𝑠²ɸ 𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ

−𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ −𝑠𝑖𝑛²ɸ 𝑐𝑜𝑠ɸ 𝑠𝑖𝑛ɸ 𝑠𝑖𝑛²ɸ ]
 
 
 
 

 (10) 

 

Z rovnice (10) je patrné, že matice tuhosti prutu v rovině je závislá na délce L, Youngův modul 

pružnosti E, ploše průřezu A a na úhlu orientace v souřadnicovém systému. Tato matice je 

symetrická a její determinant je roven nule. Dále můžeme konstatovat, že matice tuhosti je 

pozitivně semidefinitní a její diagonální prvky jsou buď nulové, nebo kladné. (Kim, Sankar, 

2008) 
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4 Metody řešení prutových soustav 

Prutové soustavy musí být navrženy tak, aby splňovali bezpečnost, stabilitu, funkčnost a 

pevnost konstrukce. Při návrhu a početní analýze konstrukce jsou tyto podmínky řešeny 

pomocí metod řešení prutových soustav. Konkrétně styčníková, průsečíková a Cremonova 

metoda se využívá u prutových soustav, které jsou staticky určité a kloubově spojené. Pomocí 

těchto metod můžeme určit rovnováhu sil, které působí na jednotlivé styčníky konstrukce. Dále 

můžeme početně určit osové síly v jednotlivých prutech, které jsou namáhány na tlak a tah. 

Při řešení prutových soustav se postupuje podle jednotlivých kroků, které nám zaručují 

správnost řešení: 

1. Určení vnější statické určitosti soustavy 

Pomocí vnější statické určitosti určujeme neznámé síly ve vnějších vazbách prutové soustavy. 

Postup určení vnější statické určitosti spočívá v uvolnění vnějších vazeb soustavy. Prutová 

soustava je staticky určitá po vnější stránce tehdy, když je počet neznámých reakčních sil roven 

počtu rovnic rovnováhy. Rovnice rovnováhy se stanovují v ose x, v ose y a momentem 

vztaženým k určitému bodu v soustavě, nejlépe k vnější podpoře. Toto uvolnění probíhá 

v předem zvoleném souřadnicovém systému. Nejčastěji se setkáváme s pevnou, kloubovou 

nebo posuvnou vazbou. (Zeman, 2023b) 

 

 

 

 

 

 

 

 

 

 

 

Pevná vazba odebírá 3 stupně volnosti. A to v ose x, y a moment. 

 

 

 

 

 

 

Obrázek 12 Pevná vazba 

Zdroj: vlastní 
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Kloubová vazba odebírá 2 stupně volnosti. Umožňuje posun v ose x a v ose y. 

 

 

 

 

 

 

 

 

 

 

 

Posuvná vazba odebírá 1 stupeň volnosti. Umožňuje pohyb pouze v jednom směru. 

 

 

 

 

 

 

 

 

 

Obrázek 13 Kloubová vazba 

Zdroj: vlastní 

Obrázek 14 Posuvná vazba 

Zdroj: vlastní 
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2. Určení vnitřní statické určitosti soustavy 
Vnitřní statická určitost zkoumá osové síly v prutech. Konkrétně to, jestli máme dostatek rovnic 

na výpočet všech osových sil. (Zeman, 2023b) 

Pro určení vnitřní statické určitosti používáme vztah: 

 p = 2. k – 3 (11) 

Kde p je počet prutů a k je počet styčníků. Od tohoto vztahu je odečtena hodnota počtu rovnic 

rovnováhy, které se používají pro určování vnější statické určitosti. Pokud se obě strany 

rovnají, jedná se o soustavu vnitřně určitou. Pokud je pravá strana větší než levá strana, jedná 

se o soustavu staticky vnitřně neurčitou. Pokud je levá strana větší než pravá, jedná se o 

soustavu staticky vnitřně neurčitou. Tato prutová soustav je nestabilní a může dojít k jejímu 

pádu. (Zeman, 2023b) 
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4.1 Styčníková metoda 

4.1.1 Popis 

Styčníková metoda se používá k určení vnitřních sil v prutech. Prutová soustava je rozdělena na 

samotné styčníky. Pruty, které vedou ze styčníků, jsou nahrazeny vnitřními silami. Pro 

zachování zákonu akce a reakce by měli veškeré vnitřní síly směřovat ven ze styčníků. Poté je 

metoda řešena rovnicemi statické rovnováhy ve dvou směrech. Po vyřešení vnitřních sil všech 

prutů jsou síly v kladném směru namáhány na tah a síly v záporném směru namáhány na tlak. 

(Zeman, 2023b) 

 

4.1.2 Grafické řešení 

Grafické řešení styčníkovou metodou je zobrazeno na obrázku 15. 

 

 

 

 

 

 

 

 

Obrázek 15 Řešení styčníkovou metodou 

Zdroj: Hrušková, 2016 
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4.2 Průsečná metoda 

4.2.1 Popis 

Průsečná metoda se používá jen pro úlohy staticky určité po vnější i vnitřní stránce. Princip 

této metody je založen na použití řezu, který prutovou soustavu rozdělí na dvě části, které jsou 

v rovnováze. Řez soustavy musí být proveden tak, aby procházel třemi pruty, jejichž osové síly 

jsou neznámé. Další podmínkou je, že pruty nesmí být rovnoběžné ani mít společný styčník. 

(Zeman, 2023a) 

Průsečná metoda se často využívá v případech, kdy je potřeba určit pouze některé síly 

v prutech, a její použití lze kombinovat se styčníkovou metodou k získání dalších osových sil 

prutů. (Zeman, 2023a) 

 

4.2.2 Grafické řešení 

Řez, který má prutovou soustavu rozdělovat na dva obrazce, je znázorněný na obrázku 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obrázek 16 Řešení průsečnou metodou 

Zdroj: Hrušková, 2016 
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4.3 Cremonova metoda 

4.3.1 Popis 

Cremonova metoda je jednou z metod určených ke stanovení vnitřních sil v prutových 

soustavách. Její princip je založen na grafickém řešení soustav sil. Důležitým bodem je 

stanovení počátečního měřítka soustavy. Použití Cremonovi metody je možné pouze 

v omezeném stavu. Tato metoda totiž vychází z podmínek rovnováhy sil v rovině. Znamená to, 

že řešené jednotlivé styčníky mohou mít maximálně dvě neznámé osové síly. Pro správný 

postup je nejprve stanoven směr pro vyřešení jednotlivých styčníků. Poté jsou jednotlivé síly 

graficky přeneseny pomocí rovnoběžky do tzv. Cremonova diagramu, kde jsou změřeny a 

následně převedeny na reálné hodnoty podle předem zvoleného měřítka. (Šebek, 2012)  

 

4.3.2 Grafické řešení 

Postup dle Cremonovi metody je znázorněný i s převodem síly na reálné hodnoty na obrázku 

17. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

Obrázek 17 Řešení Cremonovou metodou 

Zdroj: Slideplayer, 2025 
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5 Implementace numerického řešiče pro úlohy lineární 

pružnosti příhradových a nosníkových konstrukcí v 

Matlabu 

 

Celý funkční program je uveden v příloze č.1. Dále jsou popsány postupně všechny části 

programu a detailně okomentovány jednotlivé proměnné a použité algoritmy a vztahy. 

5.1 Skript pro nastavení počátečních parametrů a vstupních hodnot 

Začátek úvodního kódu v Matlabu představuje přípravu pracovního prostoru. Dochází k zavření 

všech grafických oken, které byly v Matlabu otevřeny. Poté je pracovní prostor vyčištěn. Po 

přípravě pracovního prostoru poskytujeme pro další výpočty základní informace o konkrétní 

prutové soustavě. Pro účely tvorby numerického řešiče byla zvolena prutová soustava složená 

ze sedmi styčníků (uzlů) a jedenácti prutů. Prutová soustava je řešena v souřadnicovém 

systému, kdy osa x směřuje zleva doprava a osa y směřuje směrem nahoru. Matice X tedy 

představuje souřadnice všech sedmi styčníků (uzlů). Matice C definuje pruty mezi jednotlivými 

styčníky. Například: první prut spojuje styčníky (uzle) jedna a dva. Pro další řešení prutové 

soustavy je zvolen Youngův model pružnosti a průřez prutů. Youngův modul pružnosti byl 

zvolen 200 * 10^9, což je běžná hodnota pro ocel. Průřez prutů byl zvolen 0,1 m². Dále 

program spočítá počet styčníků (uzlů) a prutů pro potřebu dalších výpočtů. 

 
close all; % Zavření všech otevřených grafických oken 
clear all; % Vymazání všech proměnných z pracovního prostoru 
 
NDIM=2; % Počet dimenzí (2D) 
 
% Definice uzlů v prostoru (souřadnice uzlů) 
X=[0 0;1 3;2 0;3 3;4 0;5 3;6 0]; 
 
% Definice prutů (spojení mezi uzly) 
C=[1,2;1,3;2,3;2,4;3,4;3,5;4,5;4,6;5,6;5,7;6,7]; 
 
E = 200e9; % Youngův modul pružnosti [Pa] 
A = 0.1; % Průřezová plocha [m^2] 
 
number_stycnik = size(X,1); % Počet uzlů 
number_prutu = size(C,1); % Počet prutů 
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5.2 Skript pro vykreslení prutové soustavy 

5.2.1 Skript pro vykreslení styčníků (uzlů)  

Tento kód je zaměřený na vykreslení styčníků ve 2D prostoru. Každý styčník je zobrazen jako 

bod v grafu. Souřadnice jednotlivých styčníků (uzlů) jsou získány z matice X. Graf je ohraničen 

pomocí pevně stanovených bodů na souřadnicích (-1, 7) v ose x a (-1, 4) v ose y. Pro 

vykreslování dalších vizualizací je grafické okno ponecháno otevřené příkazem hold on. 

 

N=size(X); % Počet řádků (uzlů) 
 
% Vykreslení uzlů 
for i=1:number_stycnik 
    x_point=X(i,1); 
    y_point=X(i,2); 
    figure(1) 
    plot(x_point,y_point,'o') % Kreslení uzlů jako body 
    line(-1, 7); 
    line(-1, 4); 
    hold on 
end 
 
 
 
 

5.2.2 Skript pro vykreslení prutů mezi styčníky (uzly) 

Tento kód vykresluje pruty mezi styčníky (uzly), kterou jsou již vykresleny do grafického okna. 

Pro vykreslení prutů je použit cyklus for, který pracuje se dvěma maticemi. Z matice C získává 

informace o tom, mezi které styčníky (uzle) je jednotlivý prut spojen. Poté přechází do matice 

X, ze které získá souřadnice konkrétních styčníků (uzlů) spojených prutem. Pomocí příkazu plot 

dochází k vykreslení čáry mezi dané styčníky (uzly). 

 

% Vykreslení prutů mezi uzly 
for i = 1:size(C, 1) 
    line1 = X(C(i, 1), :); 
    line2 = X(C(i, 2), :); 
     
    plot([line1(1), line2(1)], [line1(2), line2(2)], 'k'); % Kreslení prutů jako čáry 
end 
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5.3 Skript pro výpočet délek prutů a vlastností materiálu 

Pro výpočet délek prutů byl opět použit cyklus for, který prochází všechny pruty v konstrukci a 

vypočítává jejich délky pomocí Pythagorovy věty. Tyto výsledky jsou následně uloženy do pole 

lv(i). Nejprve však kód získává indexy dvou uzlů z matice C, která udává propojení prutů mezi 

jednotlivými styčníky. Na základě těchto indexů jsou přiřazeny souřadnice příslušných uzlů 

z matice X. Tento kód dále ke každému prutu přiřadí předem definovaný Youngův model 

pružnosti a průřezovou plochu. 

 

% Výpočet délek jednotlivých prutů 
for i = 1:size(C, 1) 
    a = C(i, 1); 
    b = C(i, 2); 
     
    x1 = X(a, 1); 
    y1 = X(a, 2); 
     
    x2 = X(b, 1); 
    y2 = X(b, 2); 
     
    lv(i) = sqrt((x2 - x1)^2 + (y2 - y1)^2); % Délka prutu 
    Ev(i) = E; % Youngův modul 
    Av(i) = A; % Průřezová plocha 
end 
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5.4 Skript pro sestavení globální matice tuhosti 

Pro sestavení globální matice tuhosti prutové soustavy byl vytvořen tento skript na základě 

uvedených informací o prutové soustavě a informací z literatury o analýze a návrhu konečných 

prvků. Tento skript řeší několik klíčových kroků pro sestavení samotné matice. Nejprve je 

vytvořena indexační matice IE. Tato matice přiřazuje každému styčníku a jeho souřadnici 

jedinečné číslo. Tím je určeno správné číslování stupňů volnosti v prutové soustavě. 

Dalším klíčovým krokem je vytvoření nulové lokální matice tuhosti K_g čtvercové tvaru, která 

se následně plní hodnotami z jednotlivých prutů. Tato část kódu dále prochází jednotlivé pruty 

v soustavě. Pro každý prut je vytvořena lokální matice tuhosti K_el_glob, která je 

transformována do globální souřadnicové soustavy. 

V dalším kroku jsou lokální matice tuhosti přičítány do globální matice K_g na správné pozice, 

které odpovídají stupňům volnosti uzlů jednotlivého prutu. K odstranění numerických 

nepřesností jsme provedli symetrizaci matice. 

 

% Přiřazení čísel stupňům volnosti jednotlivých uzlů 
a=0; 
for i=1:number_stycnik 
    for j=1:NDIM 
        a=a+1; 
        IE(i,j)=a; % Matice indexů stupňů volnosti 
    end 
end 
 
%cislo_rovnice = IE(2,2); 
 
K_g=zeros(number_stycnik*NDIM,number_stycnik*NDIM); % Globální matice tuhosti 
 
% local-elemental stifness matrix 
 
pocet_uzlu_prutu=2; % Počet uzlů na jednom prutu (každý prut spojuje 2 uzly) 
 
% Sestavení globální matice tuhosti 
for i_prut=1:number_prutu 
 
    %cislo_prutu =i_prut; 
    K_el_glob=matice_tuhosti_prutu(i_prut,X,C,Av,Ev,lv); % Výpočet elementární matice tuhosti 
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% Převod elementární matice do globální soustavy 
    a=0; 
    for i=1:pocet_uzlu_prutu 
        for j=1:NDIM 
        a=a+1; 
        b=0; 
         for k=1:pocet_uzlu_prutu 
            for l=1:NDIM 
        b=b+1; 
 
       a; 
       b; 
 
       for i = 1:pocet_uzlu_prutu 
                        for j = 1:NDIM 
                            AA = IE(C(i_prut, i), j); 
 
                            for k = 1:pocet_uzlu_prutu 
                                for l = 1:NDIM 
                                    BB = IE(C(i_prut, k), l); 
 
                                    K_g(AA, BB) = K_g(AA, BB) + K_el_glob(NDIM * (i - 1) + j, NDIM * (k - 1) + l); 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
 
K_g = 1/2*(K_g+K_g'); % Symetrizace matice tuhosti 
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5.5 Skript pro předepisování okrajových podmínek 

Pro řešení prutové soustavy podle vytvořeného numerického řešiče byly zvoleny následující 

okrajové podmínky: 

• Síla F o velikosti 100 N působí na čtvrtém uzlu proti předem zvolenému 

souřadnicovému systému v ose y.  

• Nulový posuv ve směru x pro uzel jedna. 

• Nulový posuv ve směru y pro uzel jedna. 

• Nulový posuv ve směru y pro uzel sedm. 

•  Pro první stupeň volnosti (směr x prvního uzlu) je posuv nulový. 

• Pro čtvrtý stupeň volnosti (směr x druhého uzlu) je posuv nulový. 

• Pro třináctý stupeň volnosti (směr y sedmého uzlu) je posuv nulový. 

 

F_z = zeros(number_stycnik * NDIM, 1); % Inicializace vektoru vnějších sil 
uzel_sily = 4; % Uzel, na kterém působí síla 
F_z(2*uzel_sily - 1) = 0; % Síla ve směru x je nulová 
F_z(2*uzel_sily) = -100; % Síla ve směru y je záporná, působí shora dolů 
 
% Předepsané posuvy 
pocet_predepsanych_DOF=3; 
u_predepsane= [1, 1, 0; 1, 2, 0; 7, 2, 0]; 
 
 
 
 
u(1) = 0; % Posuv u1x 
u(2) = 0; % Posuv u1y  
u(13) = 0; % Posuv uy7  
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5.6 Skript modifikace matice tuhosti a výpočtu deformace prutové 

soustavy 

Tento skript nejprve modifikuje matici tuhosti podle předem stanovených okrajových 

podmínek. Poté kód vypočítává hodnoty posuvů pomocí řešení systému rovnic. Následně je 

celá prutová soustava vykreslená do jednoho grafického okna, ve kterém nalezneme 

vykreslenou konstrukci před deformací označenou černou barvou a vykreslenou konstrukci při 

deformaci označenou červenou barvou. Pro lepší přehlednost posunů uzlů a prodloužení prutů 

bylo použito zvětšené měřítko. 

 

% Modifikace matice tuhosti kvůli předepsaným posuvům 
K_g_mod = zeros(size(K_g)); 
K_g_mod=K_g; 
 
predpodmineni = max(max(K_g)) % Vybrání maximální hodnoty z matice tuhosti 
 
% Aplikace okrajových podmínek (vynulování řádků/sloupců pro předepsané posuvy) 
for i = 1:pocet_predepsanych_DOF 
    number_stycnik = u_predepsane(i,1); 
    NDIM_DOF =u_predepsane(i,2); 
    hodnota_posuvu = u_predepsane(i,3); 
    globalni_pozice= IE(number_stycnik, NDIM_DOF); 
 
   K_g_mod(globalni_pozice, :) = 0; % Vynulování řádku 
   K_g_mod(:, globalni_pozice) = 0; % Vynulování sloupce 
   K_g_mod(globalni_pozice, globalni_pozice) = predpodmineni*1; % Nastavení na 1 
       
 
   F_z(globalni_pozice) = predpodmineni * hodnota_posuvu; % Úprava vektoru sil 
end 
 
K_g_mod=1/2*(K_g_mod+K_g_mod'); % Symetrizace modifikované matice tuhosti 
 
u_reseni = K_g_mod \ F_z; % Řešení rovnice K*u = F pro získání posuvů 
 
% Vykreslení deformovaného tvaru konstrukce 
figure(2); 
hold on; 
 
u = zeros(number_stycnik * NDIM, 1); % Inicializace vektoru posuvů 
NDIM = 2; % Počet dimenzí 
 
scale = 2e8; % Zvětšení deformace pro vizualizaci 
X_deformed = X + scale*reshape(u_reseni, NDIM, []).'; % Nové pozice uzlů 
 
 
 
 
 



 Vysoká škola polytechnická Jihlava 

37 

% Vykreslení původní a deformované soustavy 
figure; 
plotNodesAndElements(X, X_deformed, C); 
 
legend('Původní pozice', 'Deformovanáˇ pozice', 'Pruty'); 
xlabel('X'); 
ylabel('Y'); 
title('Deformace prutové soustavy s posuvy'); 
grid on; 
 
% Funkce pro vykreslení prutové soustavy 
function plotNodesAndElements(X, X_deformed, C) 
    
    plot(X(:, 1), X(:, 2), 'bo');  
    hold on; 
    plot(X_deformed(:, 1), X_deformed(:, 2), 'rx');  
     
     
    for i = 1:size(C, 1) 
        line1 = X(C(i, 1), :); 
        line2 = X(C(i, 2), :); 
        line1_deformed = X_deformed(C(i, 1), :); 
        line2_deformed = X_deformed(C(i, 2), :); 
        plot([line1(1), line2(1)], [line1(2), line2(2)], 'k'); % Původní pruty 
        plot([line1_deformed(1), line2_deformed(1)], [line1_deformed(2), line2_deformed(2)], 'r-'); 
% Deformované pruty 
    end 
end 
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6 Přehled dosažených výsledků 

Pro vývoj numerického řešiče pro úlohy lineární pružnosti příhradových a nosníkových 

konstrukcí byla použita jednoduchá prutová soustava. Tato prutová soustava je složená ze 

sedmi styčníků a jedenácti prutů, které tvoří v konstrukci geometrické obrazce ve tvaru 

rovnoramenných trojúhelníků. Pro každý prut byl zvolen Youngův modul pružnosti E 

s hodnotou 200^9 Pascalů. Průřezová plocha prutů A byla zvolena 0,1 m². 

Uložení prutové soustavy bylo zvoleno formou použití dvou vazeb na styčníku jedna a na 

styčníku sedm. Styčník jedna je uložen na kloubové vazbě, která přenáší reakční síly R ve 

vodorovném směru x (Rₓ) a ve svislém směru y (Rᵧ). Styčník sedm je uložen na posuvné vazbě, 

která přenáší reakční síly R pouze ve svislém směru y (Rᵧ).  

Pro řešení prutové soustavy byly stanoveny následující okrajové podmínky:  

• Síla F o velikosti 100 N působí na čtvrtém uzlu proti předem zvolenému 

souřadnicovému systému v ose y.  

• Nulový posuv ve směru x pro uzel jedna. 

• Nulový posuv ve směru y pro uzel jedna. 

• Nulový posuv ve směru y pro uzel sedm. 

Prutová soustava je analyzována v předem zvoleném souřadnicovém systému, kde osa x 

směřuje zleva doprava, osa y směřuje směrem nahoru a kladný směr momentu otáčení je 

zvolen proti směru hodinových ručiček. 

Obrázek 18 Prutová soustava 

Zdroj: vlastní 
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6.1 Určení vnitřních sil styčníkovou metodou 

Pro výpočet vnitřních sil jsem využil styčníkovou metodu, která je založená na podmínce 

rovnováhy jednotlivých styčníků. Každý styčník bude řešen samostatně pomocí rovnic statické 

rovnováhy. Na základě toho určím neznámé síly v jednotlivých prutech.  

6.1.1 Určení vnější statické určitosti 

Při určení vnější statické určitosti nejprve provedeme uvolnění této prutové soustavy jako 

celku. Následně můžeme řešit rovnice statické rovnováhy: 

 ∑ Fₓ = 0 : Fᴀₓ = 0 (12)   

 ∑ Fᵧ = 0 : Fᴀᵧ – F + Fᴃᵧ = 0 (13) 

 ∑ Mᴀ = 0 : - F. 3 + Fᴃᵧ. 6 = 0 (14) 

Z těchto získaných rovnic vyjádříme neznámé síly. Nejprve z rovnice (14) vyjádříme Fᴃᵧ: 

Fᴃy = 
F.3

6
 = 
100.3

6
  

Fᴃy = 50 N 

Poté vyjádřením a dosazením do rovnice (13) získáme hodnotu neznámé síly Fᴀᵧ: 

Fᴀy = - Fᴃy + F = - 50 + 100  

Fᴀy = 50 N 

Z rovnic statické rovnováhy jsme získaly dvě neznámé síly pro dvě rovnice statické rovnováhy. 

Z toho plyne, že prutová soustava je po vnější stránce staticky určitá. Dále jsme mohli z rovnic 

(6.2) a (6.3) vypočítat neznámé síly pro další výpočty. 

 

6.1.2 Určení vnitřní statické určitosti 

K určení vnitřní statické určitosti použijeme rovnici (11) ze čtvrté kapitoly.  

p = 2. k – 3 

Po dosazeních údajů o počtu prutů p = 11 a styčníků k = 7 dostaneme: 

11 = 2. 7 – 3 

11 = 11 

Po dosazení hodnot jsme ověřili, že prutová soustava je vnitřně staticky určitá. Následně 

můžeme přistoupit k řešení jednotlivých styčníků za podmínek rovnováhy. Vnitřní síly určíme 

z rovnic rovnováhy ∑ Fₓ = 0, ∑ Fᵧ = 0. K samotnému výpočtu je zapotřebí znát úhel mezi pruty. 

Jelikož prutová soustava tvoří geometrické obrazce ve tvaru rovnoramenných trojúhelníků, byl 

úhel při základně vypočítán pomocí goniometrické funkce tangens. Výsledná hodnota úhlu je 

71°33‘ (71 stupňů a 33 minut). Při výpočtu vnitřních sil prutů je doporučeno začínat od 

styčníku, který obsahuje pouze dvě neznámé síly. 
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Styčník 7 

Z rovnic statické rovnováhy dostaneme: 

 ∑ Fₓ = 0 : - N₁₀ – N₁₁. cos α = 0 (15) 

 ∑ Fᵧ = 0 : Fᴃᵧ + N₁₁. sin α = 0 (16) 

Nejprve z rovnice (16) vyjádříme neznámou sílu N₁₁: 

N₁₁ = - 
Fᴃᵧ

sin α
 = - 

50

sin 71°33'
  

N₁₁ = -52,7 N 

Dosazením síly N₁₁ do rovnice (15) získáme výslednou hodnotu síly N₁₀: 

N₁₀ = - N₁₁. cos α = - ( - 52,7 ). cos 71°33‘ 

N₁₀ = 16,68 N 

Tento postup uplatníme na všechny zbývající styčníky, dokud nebudou zjištěny všechny vnitřní 

síly prutů. 

 

Styčník 6 

Rovnice statické rovnováhy: 

 ∑ Fₓ = 0 : - N₈ – N₉. cos α + N₁₁. cos α = 0 (17) 

 ∑ Fᵧ = 0 : - N₉. sin α – N₁₁. sin α = 0 (18) 

Po vyjádření neznámé síly N₉ z rovnice (18) dostaneme: 

N₈ = - 
N₁₁. sin α

sin α
 = -  

- 52,7. sin 71°33'

sin 71°33'
  

N₉ = 52,7 N 

Dosazením síly N₉ do rovnice (17) získáme výslednou hodnotu síly N₈: 

N₈ = - N₉. cos α + N₁₁. cos α = - 52,7. cos 71°33‘ + (-52,7). sin 71°33‘ 

N₈ = - 33,36 N 
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Styčník 1 

Rovnice statické rovnováhy: 

 ∑ Fₓ = 0 : Fᴀₓ + N₂ + N₁. cos α = 0 (19) 

 ∑ Fᵧ = 0 : Fᴀᵧ + N₁. sin α = 0 (20) 

Po vyjádření neznámé síly N₁ z rovnice (20) dostaneme: 

N₁ = - 
𝐹ᴀᵧ

𝑠𝑖𝑛.𝛼
 = - 

 50

𝑠𝑖𝑛 71°33
  

N₁ =  - 52,7 N 

Dosazením síly N₁ do rovnice (19) získáme výslednou hodnotu síly N₂: 

N₂ = - Fᴀₓ – N₁. cos α = - (-52.7). cos 71°33  

N₂ = 16,68 

 

Styčník 2 

Rovnice statické rovnováhy: 

 ∑ Fₓ = 0 : N₄ +  N₃. cos α – N₁. cos α = 0 (21) 

 ∑ Fᵧ = 0 : - N₁. sin α – N₃. sin α = 0 (22) 

Po vyjádření z rovnice (22) dostaneme neznámou sílu N₃: 

N₃ = - N₁ 

N₃ = 52,7 N 

Dosazením síly N₃ do rovnice (21) získáme výslednou hodnotu síly N₄: 

N₄ = - N₃. cos α + N₁. cos α = - 52,7. cos 71°33‘ -52,7. cos 71°33‘ 

N₄ = -33,36 N 

 

Styčník 3 

Rovnice statické rovnováhy: 

 ∑ Fₓ = 0 : - N₂ + N₆ + N₅. cos α – N₃. cos α = 0 (23) 

 ∑ Fᵧ = 0 : N₃. sin α +  N₅. sin α = 0 (24) 

Po vyjádření z rovnice (24) dostaneme neznámou sílu N₅: 

N₅ = - N₃  

N₅ = - 52,7 N 

Dosazením síly N₅ do rovnice (23) získáme výslednou hodnotu síly N₆: 

N₆ = N₂ – N₅. cos α + N₃. cos α = 16,68 – (-52,7). cos 71°33‘ + 52,7. cos 71°33‘ 

N₆ = 50,04 N 
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Styčník 5 

Rovnice statické rovnováhy: 

 ∑ Fᵧ = 0 : N₇. sin α + N₉. sin α = 0 (25) 

Po vyjádření z rovnice (25) dostaneme neznámou sílu N₇: 

N₇ = - N₉ 

N₇ = -52,7 N 

 

K vypočítání všech vnitřních sil prutů nám stačilo vyřešit šest styčníků. Síly N₁, N₄, N₅, N₇, N₈, 

N₁₁, které vyšli se záporným znaménkem, jsou namáhány na tlak. Naopak síly N₂, N₃, N₆, N₉, 

N₁₀, které vyšli s kladným znaménkem, jsou namáhány na tah. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Vysoká škola polytechnická Jihlava 

43 

6.2 Výsledky z prostředí Matlabu 

V rámci práce, která se věnovala vývoji numerického řešiče pro úlohy lineární pružnosti 

příhradových a nosníkových konstrukcí, byly zjištěny výsledky z prostředí Matlabu, které mají 

klíčovou roli při posuzování stability konstrukce. Při zadání konkrétních okrajových podmínek 

byly zjištěny posuny všech sedmi styčníků v ose x a y. Výsledné hodnoty těchto posunů jsou 

uvedeny v tabulce 1. 

Při posunech uzlů v prutové soustavě také došlo v závislosti aplikování okrajových podmínek 

k prodloužení prutů. Chování prutů je určeno důsledkem deformací, které vznikají při působení 

vnějších sil. Tyto deformace následně ovlivňují chování celé konstrukce ve stabilitě a rozložení 

sil v soustavě. Výsledné hodnoty prodloužení prutů jsou zaznamenány v tabulce 2. 

Celková deformace prutové soustavy v závislosti na zadávání okrajových podmínek je viditelná 

na obrázku 19, kdy červená barva značí prutovou soustavu v deformovaném stavu a černá 

barva označuje prutovou soustavu před zatížením. 

 

 

 

 

 

 

 

 

 

 

 

Zdroj: vlastní zpracování 

 

 

 

 

 

 

 

 

 

 

Styčník Posun v ose x [m] Posun v ose y [m] 

Styčník 1 0 0 

Styčník 2 4.6875e-10 -7.0526 e-10 

Styčník 3 1.0417e-10 -1.3758 e-09 

Styčník 4 2.6042e-10 -1.9769 e-09 

Styčník 5 4.1667 e-10 -1.3758 e-09 

Styčník6 5.2083e-11 -7.0526 e-10 

Styčník 7 5.2083e-10 0 

Tabulka 1 Posuvy styčníků 
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Zdroj: vlastní zpracování 

 

 

Prut Typ Hodnota [m] 

Prut 1 Zkrácení 0.1013 

Prut 2 Prodloužení 0.0395 

Prut 3 Prodloužení 0.1061 

Prut 4 Zkrácení 0.0252 

Prut 5 Zkrácení 0.1034 

Prut 6 Prodloužení 0.0625 

Prut 7 Zkrácení 0.1034 

Prut 8 Zkrácení 0.0252 

Prut 9 Prodloužení 0.1061 

Prut 10 Prodloužení 0.0395 

Prut 11 Zkrácení 0.1013 

Tabulka 2 Prodloužení/zkrácení prutů 

Obrázek 19 Deformace prutové soustavy  

Zdroj: vlastní 
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Závěr 

Tato práce se zabývala vývojem numerického řešiče pro úlohy lineární pružnosti příhradových 

a nosníkových konstrukcí. Nejprve byly sestaveny lokální matice tuhosti jednotlivých prutů, 

které byly následně převedeny do společné matice v globálním souřadnicovém systému. Poté 

byly zadávány okrajové podmínky a bylo sledováno chování samotné prutové soustavy. 

V této práci jsou popsány jednotlivé kroky k sestavení lokální matice tuhosti pro daný prvek. 

Tato matice byla použita pro sestavení lokálních matic tuhosti jednotlivých prutů. Následně 

byla převedena do globální matice tuhosti. Tyto postupy jsou implementovány do programu 

Matlab. 

Matlab byl dále využit pro výpočet délek prutů, pro výpočet posuvů při zadávání okrajových 

podmínek konstrukce a pro vykreslení samotné konstrukce při deformaci do grafu. 

Přínos práce spočívá ve vývoji numerického řešiče, který umožňuje efektivní a přesnou analýzu 

mechanického chování příhradových a nosníkových konstrukcí v prostředí Matlabu. Dále tento 

řešič může sloužit i jako výukový materiál v technických oborech. 

S numerickým řešičem vytvořeným pro tuto práci lze pokračovat v analýze libovolných 

prutových konstrukcí s možností jeho rozšíření a úprav podle specifických potřeb. 
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 Přílohy 

Příloha 1 – Program pro analýzu prutové soustavy 

 

close all; % Zavření všech otevřených grafických oken 
clear all; % Vymazání všech proměnných z pracovního prostoru 
 
NDIM=2; % Počet dimenzí (2D) 
 
% Definice uzlů v prostoru (souřadnice uzlů) 
X=[0 0;1 3;2 0;3 3;4 0;5 3;6 0]; 
 
% Definice prutů (spojení mezi uzly) 
C=[1,2;1,3;2,3;2,4;3,4;3,5;4,5;4,6;5,6;5,7;6,7]; 
 
E = 200e9; % Youngův modul pružnosti [Pa] 
A = 0.1; % Průřezová plocha [m^2] 
 
number_stycnik = size(X,1); % Počet uzlů 
number_prutu = size(C,1); % Počet prutů 
 
N=size(X); % Počet řádků (uzlů) 
 
% Vykreslení uzlů 
for i=1:number_stycnik 
    x_point=X(i,1); 
    y_point=X(i,2); 
    figure(1) 
    plot(x_point,y_point,'o') % Kreslení uzlů jako body 
    line(-1, 7); 
    line(-1, 4); 
    hold on 
end 
 
% Vykreslení prutů mezi uzly 
for i = 1:size(C, 1) 
    line1 = X(C(i, 1), :); 
    line2 = X(C(i, 2), :); 
     
    plot([line1(1), line2(1)], [line1(2), line2(2)], 'k'); % Kreslení prutů jako čáry 
end 
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% Výpočet délek jednotlivých prutů 
for i = 1:size(C, 1) 
    a = C(i, 1); 
    b = C(i, 2); 
     
    x1 = X(a, 1); 
    y1 = X(a, 2); 
     
    x2 = X(b, 1); 
    y2 = X(b, 2); 
     
    lv(i) = sqrt((x2 - x1)^2 + (y2 - y1)^2); % Délka prutu 
    Ev(i) = E; % Youngův modul 
    Av(i) = A; % Průřezová plocha 
end 
 
% Přiřazení čísel stupňům volnosti jednotlivých uzlů 
a=0; 
for i=1:number_stycnik 
    for j=1:NDIM 
        a=a+1; 
        IE(i,j)=a; % Matice indexů stupňů volnosti 
    end 
end 
 
%cislo_rovnice = IE(2,2); 
 
K_g=zeros(number_stycnik*NDIM,number_stycnik*NDIM); % Globální matice tuhosti 
 
% local-elemental stifness matrix 
 
pocet_uzlu_prutu=2; % Počet uzlů na jednom prutu (každý prut spojuje 2 uzly) 
 
% Sestavení globální matice tuhosti 
for i_prut=1:number_prutu 
 
    %cislo_prutu =i_prut; 
    K_el_glob=matice_tuhosti_prutu(i_prut,X,C,Av,Ev,lv); % Výpočet elementární matice tuhosti 
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 % Převod elementární matice do globální soustavy 
    a=0; 
    for i=1:pocet_uzlu_prutu 
        for j=1:NDIM 
        a=a+1; 
        b=0; 
         for k=1:pocet_uzlu_prutu 
            for l=1:NDIM 
        b=b+1; 
 
       a; 
       b; 
 
       for i = 1:pocet_uzlu_prutu 
                        for j = 1:NDIM 
                            AA = IE(C(i_prut, i), j); 
 
                            for k = 1:pocet_uzlu_prutu 
                                for l = 1:NDIM 
                                    BB = IE(C(i_prut, k), l); 
 
                                    K_g(AA, BB) = K_g(AA, BB) + K_el_glob(NDIM * (i - 1) + j, NDIM * (k - 1) + l); 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
 
K_g = 1/2*(K_g+K_g'); % Symetrizace matice tuhosti 
 
  
F_z = zeros(number_stycnik * NDIM, 1); % Inicializace vektoru vnějších sil 
uzel_sily = 4; % Uzel, na kterém působí síla 
F_z(2*uzel_sily - 1) = 0; % Síla ve směru x je nulová 
F_z(2*uzel_sily) = -100; % Síla ve směru y je záporná, působí shora dolů 
 
% Předepsané posuvy 
pocet_predepsanych_DOF=3; 
u_predepsane= [1, 1, 0; 1, 2, 0; 7, 2, 0]; 
 
 
 
 
u(1) = 0; % Posuv u1x 
u(2) = 0; % Posuv u1y  
u(13) = 0; % Posuv uy7  
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% Modifikace matice tuhosti kvůli předepsaným posuvům 
K_g_mod = zeros(size(K_g)); 
K_g_mod=K_g; 
 
predpodmineni = max(max(K_g)) % Vybrání maximální hodnoty z matice tuhosti 
 
% Aplikace okrajových podmínek (vynulování řádků/sloupců pro předepsané posuvy) 
for i = 1:pocet_predepsanych_DOF 
    number_stycnik = u_predepsane(i,1); 
    NDIM_DOF =u_predepsane(i,2); 
    hodnota_posuvu = u_predepsane(i,3); 
    globalni_pozice= IE(number_stycnik, NDIM_DOF); 
 
   K_g_mod(globalni_pozice, :) = 0; % Vynulování řádku 
   K_g_mod(:, globalni_pozice) = 0; % Vynulování sloupce 
   K_g_mod(globalni_pozice, globalni_pozice) = predpodmineni*1; % Nastavení na 1 
       
 
   F_z(globalni_pozice) = predpodmineni * hodnota_posuvu; % Úprava vektoru sil 
end 
 
K_g_mod=1/2*(K_g_mod+K_g_mod'); % Symetrizace modifikované matice tuhosti 
 
u_reseni = K_g_mod \ F_z; % Řešení rovnice K*u = F pro získání posuvů 
 
% Vykreslení deformovaného tvaru konstrukce 
figure(2); 
hold on; 
 
u = zeros(number_stycnik * NDIM, 1); % Inicializace vektoru posuvů 
NDIM = 2; % Počet dimenzí 
 
scale = 2e8; % Zvětšení deformace pro vizualizaci 
X_deformed = X + scale*reshape(u_reseni, NDIM, []).'; % Nové pozice uzlů 
 
% Vykreslení původní a deformované soustavy 
figure; 
plotNodesAndElements(X, X_deformed, C); 
 
legend('Původní pozice', 'Deformovanáˇ pozice', 'Pruty'); 
xlabel('X'); 
ylabel('Y'); 
title('Deformace prutové soustavy s posuvy'); 
grid on; 
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% Funkce pro vykreslení prutové soustavy 
function plotNodesAndElements(X, X_deformed, C) 
    
    plot(X(:, 1), X(:, 2), 'bo');  
    hold on; 
    plot(X_deformed(:, 1), X_deformed(:, 2), 'rx');  
     
     
    for i = 1:size(C, 1) 
        line1 = X(C(i, 1), :); 
        line2 = X(C(i, 2), :); 
        line1_deformed = X_deformed(C(i, 1), :); 
        line2_deformed = X_deformed(C(i, 2), :); 
        plot([line1(1), line2(1)], [line1(2), line2(2)], 'k'); % Původní pruty 
        plot([line1_deformed(1), line2_deformed(1)], [line1_deformed(2), line2_deformed(2)], 'r-'); 
% Deformované pruty 
    end 
end 
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Příloha 2 – Funkce pro výpočet globální matice tuhosti prutu 

 

% Výpočet globální matice tuhosti pro daný prut 
function [K_el_glob] = matice_tuhosti_prutu(cislo_prutu,X,C,Av,Ev,lv) 
 
    K_el=zeros(4,4);% Inicializace lokální matice tuhosti 4x4 (pro 2D prutový prvek) 
    i=cislo_prutu % Uložení čísla prutu do proměnné i 
    K_el = ((Av(i)*Ev(i))/lv(i))*[1 0 -1 0;0 0 0 0;-1 0 1 0;0 0 0 0]; 
 
    % Získání souřadnic počátečního a koncového uzlu daného prutu 
    pozice1 = X(C(i, 1), :); % Souřadnice počátečního uzlu prutu 
    pozice2 = X(C(i, 2), :); % Souřadnice koncového uzlu prutu 
 
    % Výpočet kosinu a sinu úhlu natočení prutu vzhledem k souřadnému systému 
    cosine = (pozice2(1)- pozice1(1)) /lv(i); 
    sine = (pozice2(2)- pozice1(2)) /lv(i); 
 
    % Transformančí matice pro přechod mezi lokálním a globálním souřadným systémem 
    T = [cosine sine 0 0;-sine cosine 0 0;0 0 cosine sine;0 0 -sine cosine]; 
 
    % Výpočet globální matice tuhosti: transformace z lokálního do globálního souřadného 
systému 
    K_el_glob = T' * K_el * T; 
    K_el_glob 
    return 
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