Předmět | Artificial Intelligence (UIa) | |||||
---|---|---|---|---|---|---|
Garantuje | Katedra technických studií (KTS) | |||||
Garant | Ing. Lenka Kuklišová Pavelková, Ph.D. | |||||
Jazyk | anglicky | |||||
Počet kreditů | 4 | |||||
Ekvivalent |
Prezenční studium | |
---|---|
Přednáška | 2 h |
Cvičení | 2 h |
Kombinované studium | |
Tutoriál / přednáška | 4 h |
Cvičení | 8 h |
Studijní plán | Typ | Sem. | Kred. | Ukon. |
---|---|---|---|---|
Aplikovaná informatika - kombi, platný od ZS 2019/2020 | PV | 6 | 4 kr. | Z,ZK |
Aplikovaná informatika - kombi, platný od ZS 2021/2022 | PV | 6 | 4 kr. | Z,ZK |
Aplikovaná informatika - platný od ZS 2019/2020 | PV | 6 | 4 kr. | Z,ZK |
Aplikovaná informatika - platný od ZS 2021/2022 | PV | 6 | 4 kr. | Z,ZK |
Erasmus - Aplikovaná informatika - příjezd na krátkodobý studijní pobyt | PV | 1 | 4 kr. | Z,ZK |
The goal of the course is to familiarise students with the possibilities of applying artificial intelligence instruments and techniques in real-life problem solving. The student is able to use the knowledge and skills to support planning, managing and decision-making especially in the area of technical, social and natural sciences. They can distinguish directly algorithmized tasks from computationally complex, typically NP-complete tasks, which need supplementary information to find results in a feasible time (heuristics, utility functions etc.)
Knowledge: The student knows fundamental methods of uninformed and informed state space search, they can represent both definite and indefinite knowledge in various ways and on its basis they can derive and validate new knowledge. They comprehend the issue of machine learning on both linear and nonlinear structures (trees, neural networks). They can find sub-optimal solution of NP-complete problems in a finite time. They can solve application tasks by means of fuzzy logic.
Skills: The student understands artificial intelligence trends and can use this knowledge in practice. They can formulate applicable heuristics and criterial functions. They work with the general concept of the intelligent agent and they can adjust it to a particular assignment. They realize the significance of input data quality and sufficiency. They interpret achieved results correctly and consider their limitations.