Mathematics 1

Studijní plán: Aplikované strojírenství - platný od ZS 2025/2026

PředmětMathematics 1 (M1-1)
GarantujeKatedra matematiky (KM)
Garantdoc. RNDr. Petr Gurka, CSc.
Jazykanglicky
Počet kreditů6
Ekvivalent
Prezenční studium
Přednáška2 h
Cvičení3 h
Kombinované studium
Tutoriál / přednáška6 h
Cvičení8 h
Studijní plán Typ Sem. Kred. Ukon.
Aplikované strojírenství - kombi, platný od ZS 2025/2026 P 2 6 kr. Z,ZK
Aplikované strojírenství - platný od ZS 2025/2026 P 2 6 kr. Z,ZK

Sylabus

  • Extreme points of a function.
  • Antiderivative and indefinite integral. Integration by parts, a method of substitution.
  • Definite integral and its applications.
  • Sequences and infinite number series, various criteria for convergence of a series.
  • Sequences and series of functions, power series.
  • Approximation of a function, Taylor polynomial, Taylor series.
  • Fourier series
  • Introduction to the theory of complex functions of one complex variable
  • Monotony, convexity, and concavity of a function.
  • Mean value theorems, 1'Hospital's rule, asymptotes of a function.
  • Derivative, geometric and physical interpretation of the first derivative, calculation of derivatives.
  • Limit and continuity of a function.
  • Real and complex functions of one real variable, elementary functions.
  • Basic facts from the propositional logic and the set theory.

Doporučená literatura

  • HERMAN, Edwin, STRANG, Gilbert. Calculus Volume 1, Open Stax 2020, ISBN-13: 978-1-947172-13-5
  • HERMAN, Edwin, STRANG, Gilbert. Calculus Volume 2, Open Stax 2020, ISBN-13: 978-1-947172-14-2
  • BHALA Rajendra:Fourier series, Mathematical Association of America, 2012
  • OBERGUGGEBERGER Michael, OSTEMANN Alexander. Analysis for computer scientists, Springer, London, Dordrecht, Heidelberg, New York, 2011
  • ADAMS, Robert A.: Calculus: a complete course (9th edition), Pearson, Addison Wesley, Toronto, 2017
  • LANG Sergie. A first course in calculus (5th edition) Springer, London, 1998
  • learning support in LMS Moodle

Anotace

The course aims to equip students with basic knowledge of mathematical analysis. Students should acquire basic computational skills relevant to the functions of one variable. Lectures are focused on the interpretation of the concepts of the differential and integral calculus.

^ nahoru ^

Pracuji, vyčkejte prosím